1887

Abstract

Mobile genetic elements (MGEs) are agents of bacterial evolution and adaptation. Genome sequencing provides an unbiased approach that has revealed an abundance of MGEs in prokaryotes, mainly plasmids and integrative conjugative elements. Nevertheless, many mobilomes, particularly those from environmental bacteria, remain underexplored despite their representing a reservoir of genes that can later emerge in the clinic. Here, we explored the mobilome of the family, focusing on strains from Brazilian Atlantic Forest soil. Novel and strains were identified, with the former ones harbouring linear and circular plasmids encoding the specialized type-VII secretion system (T7SS) and mobility-associated genes. In addition, we also identified a T4SS-mediated integrative conjugative element (ICEMyc226) encoding two T7SSs and a number of xenobiotic degrading genes. Our study uncovers the diversity of the mobilome, providing the evidence of an ICE in this bacterial family. Moreover, the presence of T7SS genes in an ICE, as well as plasmids, highlights the role of these mobile genetic elements in the dispersion of T7SS.

Funding
This study was supported by the:
  • Fundação Oswaldo Cruz
    • Principle Award Recipient: Sergio Mascarenhas Morgado
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Award 001)
    • Principle Award Recipient: Sergio Mascarenhas Morgado
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico
    • Principle Award Recipient: Not Applicable
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000382
2020-06-04
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/7/mgen000382.html?itemId=/content/journal/mgen/10.1099/mgen.0.000382&mimeType=html&fmt=ahah

References

  1. Frost LS, Leplae R, Summers AO, Toussaint A. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 2005; 3:722–732 [View Article][PubMed]
    [Google Scholar]
  2. Guglielmini J, Quintais L, Garcillán-Barcia MP, de la Cruz F, Rocha EPC. The repertoire of ice in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet 2011; 7:e1002222 [View Article][PubMed]
    [Google Scholar]
  3. Guédon G, Libante V, Coluzzi C, Payot S, Leblond-Bourget N. The obscure world of integrative and mobilizable elements, highly widespread elements that Pirate bacterial conjugative systems. Genes 2017; 8:337 [View Article][PubMed]
    [Google Scholar]
  4. Blesa A, Sánchez M, Sacristán-Horcajada E, González-de la Fuente S, Peiró R et al. Into the Thermus mobilome: presence, diversity and recent activities of insertion sequences across Thermus spp. Microorganisms 2019; 7:25 [View Article][PubMed]
    [Google Scholar]
  5. Getino M, de la Cruz F. Natural and artificial strategies to control the conjugative transmission of plasmids. Microbiol Spectr 2018; 6: [View Article][PubMed]
    [Google Scholar]
  6. Krupovic M, Makarova KS, Wolf YI, Medvedeva S, Prangishvili D et al. Integrated mobile genetic elements in Thaumarchaeota. Environ Microbiol 2019; 21:2056–2078 [View Article][PubMed]
    [Google Scholar]
  7. Pesesky MW, Tilley R, Beck DAC. Mosaic plasmids are abundant and unevenly distributed across prokaryotic taxa. Plasmid 2019; 102:10–18 [View Article][PubMed]
    [Google Scholar]
  8. Burrus V, Waldor MK. Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol 2004; 155:376–386 [View Article][PubMed]
    [Google Scholar]
  9. Ghinet MG, Bordeleau E, Beaudin J, Brzezinski R, Roy S et al. Uncovering the prevalence and diversity of integrating conjugative elements in actinobacteria. PLoS One 2011; 6:e27846 [View Article][PubMed]
    [Google Scholar]
  10. Bordeleau E, Ghinet MG, Burrus V. Diversity of integrating conjugative elements in actinobacteria: coexistence of two mechanistically different DNA-translocation systems. Mob Genet Elements 2012; 2:119–124 [View Article][PubMed]
    [Google Scholar]
  11. Grindley NDF, Whiteson KL, Rice PA. Mechanisms of site-specific recombination. Annu Rev Biochem 2006; 75:567–605 [View Article][PubMed]
    [Google Scholar]
  12. Primm TP, Lucero CA. Falkinham JO 3rd. health impacts of environmental mycobacteria. Clin Microbiol Rev 2004; 17:98–106
    [Google Scholar]
  13. Gupta RS, Lo B, Son J. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera. Front Microbiol 2018; 9:67 [View Article][PubMed]
    [Google Scholar]
  14. Gentile GM, Wetzel KS, Dedrick RM, Montgomery MT, Garlena RA et al. More evidence of Collusion: a new Prophage-Mediated viral defense system encoded by mycobacteriophage Sbash. mBio 2019; 10:e00196–19 [View Article][PubMed]
    [Google Scholar]
  15. Shintani M, Sanchez ZK, Kimbara K. Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Front Microbiol 2015; 6:242 [View Article][PubMed]
    [Google Scholar]
  16. Gray TA, Derbyshire KM. Blending genomes: distributive conjugal transfer in mycobacteria, a sexier form of HGT. Mol Microbiol 2018; 108:601–613 [View Article][PubMed]
    [Google Scholar]
  17. Labidi A, Mardis E, Roe BA, Wallace RJ. Cloning and DNA sequence of the Mycobacterium fortuitum var fortuitum plasmid pAL5000. Plasmid 1992; 27:130–140 [View Article][PubMed]
    [Google Scholar]
  18. Picardeau M, Vincent V. Characterization of large linear plasmids in mycobacteria. J Bacteriol 1997; 179:2753–2756 [View Article][PubMed]
    [Google Scholar]
  19. Bachrach G, Colston MJ, Bercovier H, Bar-Nir D, Anderson C et al. A new single-copy mycobacterial plasmid, pMF1, from Mycobacterium fortuitum which is compatible with the pAL5000 replicon. Microbiology 2000; 146 (Pt 2:297–303 [View Article][PubMed]
    [Google Scholar]
  20. Le Dantec C, Winter N, Gicquel B, Vincent V, Picardeau M. Genomic sequence and transcriptional analysis of a 23-kilobase mycobacterial linear plasmid: evidence for horizontal transfer and identification of plasmid maintenance systems. J Bacteriol 2001; 183:2157–2164 [View Article][PubMed]
    [Google Scholar]
  21. Kirby C, Waring A, Griffin TJ, Grindley NDF, Grindley NDF et al. Cryptic plasmids of Mycobacterium avium: Tn552 to the rescue. Mol Microbiol 2002; 43:173–186 [View Article][PubMed]
    [Google Scholar]
  22. Stinear TP, Mve-Obiang A, Small PLC, Frigui W, Pryor MJ et al. Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans. Proc Natl Acad Sci U S A 2004; 101:1345–1349 [View Article][PubMed]
    [Google Scholar]
  23. Stinear TP, Pryor MJ, Porter JL, Cole ST. Functional analysis and annotation of the virulence plasmid pMUM001 from Mycobacterium ulcerans. Microbiology 2005; 151:683–692 [View Article][PubMed]
    [Google Scholar]
  24. Ripoll F, Pasek S, Schenowitz C, Dossat C, Barbe V et al. Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus. PLoS One 2009; 4:e5660 [View Article][PubMed]
    [Google Scholar]
  25. Rabello MCdaS, Matsumoto CK, Almeida LGPde, Menendez MC, Oliveira RSde et al. First description of natural and experimental conjugation between mycobacteria mediated by a linear plasmid. PLoS One 2012; 7:e29884 [View Article][PubMed]
    [Google Scholar]
  26. Leão SC, Matsumoto CK, Carneiro A, Ramos RT, Nogueira CL et al. The detection and sequencing of a broad-host-range conjugative IncP-1β plasmid in an epidemic strain of Mycobacterium abscessus subsp. bolletii. PLoS One 2013; 8:e60746 [View Article][PubMed]
    [Google Scholar]
  27. Ummels R, Abdallah AM, Kuiper V, Aâjoud A, Sparrius M et al. Identification of a novel conjugative plasmid in mycobacteria that requires both type IV and type VII secretion. mBio 2014; 5:e01744–14 [View Article][PubMed]
    [Google Scholar]
  28. Uchiya K-ichi, Takahashi H, Nakagawa T, Yagi T, Moriyama M et al. Characterization of a novel plasmid, pMAH135, from Mycobacterium avium subsp. hominissuis. PLoS One 2015; 10:e0117797 [View Article][PubMed]
    [Google Scholar]
  29. Morgado SM, Marín MA, Freitas FS, Fonseca EL, Vicente ACP. Complete plasmid sequence carrying type IV-like and type VII secretion systems from an atypical mycobacteria strain. Mem Inst Oswaldo Cruz 2017; 112:514–516 [View Article][PubMed]
    [Google Scholar]
  30. Kim B-J, Cha G-Y, Kim B-R, Kook Y-H, Kim B-J. Insights From the Genome Sequence of Mycobacterium paragordonae, a Potential Novel Live Vaccine for Preventing Mycobacterial Infections: The Putative Role of Type VII Secretion Systems for an Intracellular Lifestyle Within Free-Living Environmental Predators. Front Microbiol 2019; 10:1524 [View Article][PubMed]
    [Google Scholar]
  31. Dumas E, Christina Boritsch E, Vandenbogaert M, Rodríguez de la Vega RC, Thiberge J-M et al. Mycobacterial pan-genome analysis suggests important role of plasmids in the radiation of type VII secretion systems. Genome Biol Evol 2016; 8:387–402 [View Article][PubMed]
    [Google Scholar]
  32. Newton-Foot M, Warren RM, Sampson SL, van Helden PD, Gey van Pittius NC. The plasmid-mediated evolution of the mycobacterial Esx (type VII) secretion systems. BMC Evol Biol 2016; 16:62 [View Article][PubMed]
    [Google Scholar]
  33. Mortimer TD, Weber AM, Pepperell CS. Evolutionary thrift: mycobacteria Repurpose plasmid diversity during adaptation of type VII secretion systems. Genome Biol Evol 2017; 9:398–413 [View Article][PubMed]
    [Google Scholar]
  34. Liu M, Li X, Xie Y, Bi D, Sun J et al. Iceberg 2.0: an updated database of bacterial integrative and conjugative elements. Nucleic Acids Res 2019; 47:D660–D665 [View Article][PubMed]
    [Google Scholar]
  35. Patel RK, Jain M. Ngs Qc toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 2012; 7:e30619 [View Article][PubMed]
    [Google Scholar]
  36. Kelley DR, Schatz MC, Salzberg SL. Quake: quality-aware detection and correction of sequencing errors. Genome Biol 2010; 11:R116 [View Article][PubMed]
    [Google Scholar]
  37. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  38. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article][PubMed]
    [Google Scholar]
  39. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 15;30:2068–2069
    [Google Scholar]
  40. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013; 79:7696–7701
    [Google Scholar]
  41. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313
    [Google Scholar]
  42. Letunic I, Bork P. Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245
    [Google Scholar]
  43. Xie Y, Wei Y, Shen Y, Li X, Zhou H et al. TADB 2.0: an updated database of bacterial type II toxin-antitoxin loci. Nucleic Acids Res 2018; 46:D749–D753
    [Google Scholar]
  44. Okonechnikov K, Golosova O, Fursov M, team U. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 2012; 28:1166–1167
    [Google Scholar]
  45. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics 2011; 27:1009–1010
    [Google Scholar]
  46. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731
    [Google Scholar]
  47. Darzi Y, Letunic I, Bork P, Yamada T. iPath3.0: interactive pathways explorer V3. Nucleic acids research 2018; 46:W510–W513
    [Google Scholar]
  48. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. Blast ring image generator (BRIG): simple prokaryote genome comparisons. BMC genomics 2011; 12:402
    [Google Scholar]
  49. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 2013; 57:3348–3357
    [Google Scholar]
  50. Vernikos GS, Parkhill J. Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 2006; 15;22:2196–2203
    [Google Scholar]
  51. Li X, Xie Y, Liu M, Tai C, Sun J et al. oriTfinder: a web-based tool for the identification of origin of transfers in DNA sequences of bacterial mobile genetic elements. Nucleic Acids Res 2018; 46:W229–W234
    [Google Scholar]
  52. Jørgensen TS, Xu Z, Hansen MA, Sørensen SJ, Hansen LH. Hundreds of circular novel plasmids and DNA elements identified in a rat cecum metamobilome. PloS one 2014; 9:e87924
    [Google Scholar]
  53. Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A et al. plasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics 2016; 32:3380–3387
    [Google Scholar]
  54. Eddy SR. Accelerated profile HMM searches. PLOS Comp. Biol 2011; 7:e1002195
    [Google Scholar]
  55. Katoh K, Standley DM. MAFFT: iterative refinement and additional methods. Methods Mol Biol 2014; 1079:131–146
    [Google Scholar]
  56. Sela I, Ashkenazy H, Katoh K, Pupko T. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res 2015; 43:W7–W14
    [Google Scholar]
  57. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321
    [Google Scholar]
  58. Morgado SM, Vicente A. Beyond the limits: tRNA array units in Mycobacterium genomes. Frontiers in microbiology 2018; 9:1042
    [Google Scholar]
  59. Lambais MR, Crowley DE, Cury JC, Büll RC, Rodrigues RR. Bacterial diversity in tree canopies of the Atlantic forest. Science 2006; 312:1917
    [Google Scholar]
  60. Bruce T, Martinez IB, Maia Neto O, Vicente AC, Kruger RH et al. Bacterial community diversity in the Brazilian Atlantic forest soils. Microb Ecol 2010; 60:840–849
    [Google Scholar]
  61. Picardeau M, Le Dantec C, Vincent V. Analysis of the internal replication region of a mycobacterial linear plasmid. Microbiology 2000; 146:305–313
    [Google Scholar]
  62. Scherzinger E, Ziegelin G, Bárcena M, Carazo JM, Lurz R et al. The RepA protein of plasmid RSF1010 is a replicative DNA helicase. J Biol Chem 1997; 272:30228–30236
    [Google Scholar]
  63. Ahsan S, Kabir MS. Linear plasmids and their replication. Stamford J Microbiol 2013; 2:1–5
    [Google Scholar]
  64. del Solar G, Giraldo R, Ruiz-Echevarría MJ, Espinosa M, Díaz-Orejas R. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 1998; 62:434–464
    [Google Scholar]
  65. Lilly J, Camps M. Mechanisms of theta plasmid replication. Microbiology spectrum 2015; 3:PLAS-0029–2014
    [Google Scholar]
  66. Antonenka U, Nölting C, Heesemann J, Rakin A. Horizontal transfer of Yersinia high-pathogenicity island by the conjugative RP4 attB target-presenting shuttle plasmid. Mol Microbiol 2005; 57:727–734
    [Google Scholar]
  67. Doublet B, Boyd D, Mulvey MR, Cloeckaert A. The Salmonella genomic island 1 is an integrative mobilizable element. Mol Microbiol 2005; 55:1911–1924
    [Google Scholar]
  68. Douard G, Praud K, Cloeckaert A, Doublet B. The Salmonella genomic island 1 is specifically mobilized in trans by the IncA/C multidrug resistance plasmid family. PloS one 2010; 5:e15302
    [Google Scholar]
  69. Guérillot R, Siguier P, Gourbeyre E, Chandler M, Glaser P. The diversity of prokaryotic DDE transposases of the mutator superfamily, insertion specificity, and association with conjugation machineries. Genome Biol Evol 2014; 6:260–272
    [Google Scholar]
  70. Ambroset C, Coluzzi C, Guédon G DMD, Loux V et al. New insights into the classification and integration specificity of Streptococcus integrative conjugative elements through extensive genome exploration. Front Microbiol 2016; 6:1483
    [Google Scholar]
  71. Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 2017; 41:512–537
    [Google Scholar]
  72. Sansevere EA, Luo X, Park JY, Yoon S, Seo KS et al. Transposase-Mediated excision, conjugative transfer, and diversity of ICE6013 elements in Staphylococcus aureus . J Bacteriol Res 2017; 199:e00629–16
    [Google Scholar]
  73. Zhu D, Wan J, Yang Z, Xu J, Wang M et al. First report of integrative conjugative elements in Riemerella anatipestifer isolates from ducks in China. Front Vet Sci 2019; 6:128
    [Google Scholar]
  74. Cury J, Oliveira PH, de la Cruz F, Rocha E. Host range and genetic plasticity explain the co-existence of integrative and extrachromosomal mobile genetic elements. Mol Biol Evol 2018; 35:2230–2239
    [Google Scholar]
  75. Wozniak RA, Fouts DE, Spagnoletti M, Colombo MM, Ceccarelli D et al. Comparative ice genomics: insights into the evolution of the SXT/R391 family of ICEs. PLoS genetics 2009; 5:e1000786
    [Google Scholar]
  76. Hülter N, Ilhan J, Wein T, Kadibalban AS, Hammerschmidt K et al. An evolutionary perspective on plasmid lifestyle modes. Curr Opin Microbiol 2017; 38:74–80
    [Google Scholar]
  77. Brochet M, Cunha D V, Couvé E, Rusniok C, Trieu-Cuot P et al. Atypical association of DDE transposition with conjugation specifies a new family of mobile elements. Mol Microbiol 2009; 71:948–959
    [Google Scholar]
  78. Johnson CM, Grossman AD. Integrative and conjugative elements (ICEs): what they do and how they work. Annual review of genetics 2015; 49:577–601
    [Google Scholar]
  79. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clinical microbiology reviews 2018; 31:e00088–17
    [Google Scholar]
  80. Panda A, Drancourt M, Tuller T, Pontarotti P. Genome-Wide analysis of horizontally acquired genes in the genus Mycobacterium. Scientific reports 2018; 8:14817
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000382
Loading
/content/journal/mgen/10.1099/mgen.0.000382
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error