1887

Abstract

is nowadays a relevant nosocomial pathogen characterized by multidrug resistance (MDR) and concomitant difficulties to treat infections. OmpA is the most abundant outer membrane (OM) protein, and is involved in virulence, host-cell recognition, biofilm formation, regulation of OM stability, permeability and antibiotic resistance. OmpA members are two‐domain proteins with an N‐terminal eight‐stranded β‐barrel domain with four external loops (ELs) interacting with the environment, and a C‐terminal periplasmic domain binding non‐covalently to the peptidoglycan. Here, we combined data from genome sequencing, phylogenetic and multilocus sequence analyses from 975 strains/isolates of the / complex (ACB), 946 from , to explore microevolutionary divergence. Five major variant groups were identified (V1 to V5) in , encompassing 52 different alleles coding for 23 different proteins. Polymorphisms were concentrated in five regions corresponding to the four ELs and the C‐terminal end, and provided evidence for intra‐genic recombination. variants were not randomly distributed across the . phylogeny, with the most frequent V1(lct)a1 allele found in most clonal complex 2 (CC2) strains and the second most frequent V2(lct)a1 allele in the majority of CC1 strains. Evidence was found for assortative exchanges of alleles not only between separate . lineages, but also different ACB species. The overall results have implications for evolution, epidemiology, virulence and vaccine design.

Funding
This study was supported by the:
  • Alejandro M. Viale , Agencia Nacional de Promoción Científica y Tecnológica , (Award PICT-2015-1072)
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000381
2020-06-04
2021-03-02
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/6/mgen000381.html?itemId=/content/journal/mgen/10.1099/mgen.0.000381&mimeType=html&fmt=ahah

References

  1. Garcia-Garcera M, Touchon M, Brisse S, Rocha EPC. Metagenomic assessment of the interplay between the environment and the genetic diversification of Acinetobacter. Environ Microbiol 2017; 19:5010–5024 [CrossRef][PubMed]
    [Google Scholar]
  2. Evans BA, Hamouda A, Amyes SGB. The rise of carbapenem-resistant Acinetobacter baumannii. Curr Pharm Des 2013; 19:223–238 [CrossRef][PubMed]
    [Google Scholar]
  3. Roca I, Espinal P, Vila-Farrés X, Vila J. The Acinetobacter baumannii oxymoron: commensal Hospital Dweller turned Pan-Drug-Resistant menace. Front Microbiol 2012; 3:148 [CrossRef][PubMed]
    [Google Scholar]
  4. Antunes LCS, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis 2014; 71:292–301 [CrossRef]
    [Google Scholar]
  5. Lee C-R, Lee JH, Park M, Park KS, Bae IK et al. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front Cell Infect Microbiol 2017; 7:55 [CrossRef]
    [Google Scholar]
  6. Morris FC, Dexter C, Kostoulias X, Uddin MI, Peleg AY. The mechanisms of disease caused by Acinetobacter baumannii. Front Microbiol 2019; 10:1601 [CrossRef]
    [Google Scholar]
  7. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 2008; 21:538–582 [CrossRef]
    [Google Scholar]
  8. Bartual SG, Seifert H, Hippler C, Luzon MAD, Wisplinghoff H et al. Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J Clin Microbiol 2005; 43:4382–4390 [CrossRef]
    [Google Scholar]
  9. Diancourt L, Passet V, Nemec A, Dijkshoorn L, Brisse S. The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One 2010; 5:e10034 [CrossRef]
    [Google Scholar]
  10. Holt K, Kenyon JJ, Hamidian M, Schultz MB, Pickard DJ et al. Five decades of genome evolution in the globally distributed, extensively antibiotic‐resistant Acinetobacter baumannii global clone 1. Microb Genom 2016; 2:e000052
    [Google Scholar]
  11. Mussi MA, Limansky AS, Relling V, Ravasi P, Arakaki A et al. Horizontal gene transfer and assortative recombination within the Acinetobacter baumannii clinical population provide genetic diversity at the single carO gene, encoding a major outer membrane protein channel. J Bacteriol 2011; 193:4736–4748 [CrossRef]
    [Google Scholar]
  12. Snitkin ES, Zelazny AM, Montero CI, Stock F, Mijares L et al. Genome-Wide recombination drives diversification of epidemic strains of Acinetobacter baumannii. Proc Natl Acad Sci U S A 2011; 108:13758–13763 [CrossRef]
    [Google Scholar]
  13. Wright MS, Haft DH, Harkins DM, Perez F, Hujer KM et al. New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis. MBio 2014; 5::e00963‐13 [CrossRef]
    [Google Scholar]
  14. Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clinical Microbiology and Infection 2006; 12:826–836 [CrossRef]
    [Google Scholar]
  15. Evans BA, Amyes SG. OXA beta‐lactamases. Clin Microbiol Rev 2014; 27:241–263
    [Google Scholar]
  16. Luo G, Lin L, Ibrahim AS, Baquir B, Pantapalangkoor P et al. Active and passive immunization protects against lethal, extreme drug Resistant-Acinetobacter baumannii infection. PLoS One 2012; 7:e29446 [CrossRef]
    [Google Scholar]
  17. Kim SA, Yoo SM, Hyun SH, Choi CH, Yang SY et al. Global gene expression patterns and induction of innate immune response in human laryngeal epithelial cells in response to Acinetobacter baumannii outer membrane protein A. FEMS Immunol Med Microbiol 2008; 54:45–52 [CrossRef]
    [Google Scholar]
  18. Moriel DG, Beatson SA, Wurpel DJ, Lipman J, Nimmo GR et al. Identification of novel vaccine candidates against multidrug-resistant Acinetobacter baumannii. PLoS One 2013; 8:e77631 [CrossRef]
    [Google Scholar]
  19. Fajardo Bonin R, Chapeaurouge A, Perales J, da Silva JG, do Nascimento HJ et al. Identification of immunogenic proteins of the bacterium Acinetobacter baumannii using a proteomic approach. Proteomics Clin Appl 2014; 8:916–923 [CrossRef][PubMed]
    [Google Scholar]
  20. Wang N, Ozer EA, Mandel MJ, Hauser AR. Genome-Wide identification of Acinetobacter baumannii genes necessary for persistence in the lung. MBio 2014; 5:e01163‐14 [CrossRef]
    [Google Scholar]
  21. Méndez JA, Mateos J, Beceiro A, Lopez M, Tomás M et al. Quantitative proteomic analysis of host—pathogen interactions: a study of Acinetobacter baumannii responses to host airways. BMC Genomics 2015; 16:422 [CrossRef]
    [Google Scholar]
  22. Zhang X, Yang T, Cao J, Sun J, Dai W et al. Mucosal immunization with purified OmpA elicited protective immunity against infections caused by multidrug-resistant Acinetobacter baumannii. Microb Pathog 2016; 96:20–25 [CrossRef]
    [Google Scholar]
  23. Lin M-F, Tsai P-W, Chen J-Y, Lin Y-Y, Lan C-Y. OmpA binding mediates the effect of antimicrobial peptide LL-37 on Acinetobacter baumannii. PLoS One 2015; 10:e0141107 [CrossRef]
    [Google Scholar]
  24. Vila-Farrés X, Parra-Millán R, Sánchez-Encinales V, Varese M, Ayerbe-Algaba R et al. Combating virulence of Gram-negative bacilli by OmpA inhibition. Sci Rep 2017; 7:14683 [CrossRef]
    [Google Scholar]
  25. Sugawara E, Nagano K, Nikaido H. Alternative folding pathways of the major porin OprF of Pseudomonas aeruginosa. FEBS J 2012; 279:910–918 [CrossRef][PubMed]
    [Google Scholar]
  26. Smith SGJ, Mahon V, Lambert MA, Fagan RP. A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiol Lett 2007; 273:1–11 [CrossRef]
    [Google Scholar]
  27. Confer AW, Ayalew S. The OmpA family of proteins: roles in bacterial pathogenesis and immunity. Vet Microbiol 2013; 163:207–222 [CrossRef]
    [Google Scholar]
  28. Park JS, Lee WC, Yeo KJ, Ryu Kyoung‐Seok, Kumarasiri M et al. Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the Gram‐negative bacterial outer membrane. FASEB J 2012; 26:219–228 [CrossRef]
    [Google Scholar]
  29. Sugawara E, Nikaido H. OmpA is the principal nonspecific slow porin of Acinetobacter baumannii. J Bacteriol 2012; 194:4089–4096 [CrossRef]
    [Google Scholar]
  30. Iyer R, Moussa SH, Durand-Réville TF, Tommasi R, Miller A. Acinetobacter baumannii OmpA Is a Selective Antibiotic Permeant Porin. ACS Infect. Dis 2018; 4:373–381 [CrossRef]
    [Google Scholar]
  31. Choi CH, Lee JS, Lee YC, Park TI, Lee JC. Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells. BMC Microbiol 2008; 8:216 [CrossRef]
    [Google Scholar]
  32. Choi CH, Hyun SH, Lee JY, Lee JS, Lee YS et al. Acinetobacter baumannii outer membrane protein A targets the nucleus and induces cytotoxicity.. Cell Microbiol. 2008; 10:309–319
    [Google Scholar]
  33. Gaddy JA, Tomaras AP, Actis LA. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect Immun 2009; 77:3150–3160 [CrossRef]
    [Google Scholar]
  34. Lee JS, Choi CH, Kim JW, Lee JC. Acinetobacter baumannii outer membrane protein A induces dendritic cell death through mitochondrial targeting. J Microbiol. 2010; 48:387–392 [CrossRef]
    [Google Scholar]
  35. Sanchez‐Encinales V, Alvarez‐Marin R, Pachon‐Ibanez ME, Fernandez‐Cuenca F, Pascual A et al. Overproduction of Outer Membrane Protein A by Acinetobacter baumannii as a Risk Factor for Nosocomial Pneumonia, Bacteremia, and Mortality Rate Increase. J Infect Dis 2017; 215::966–:974
    [Google Scholar]
  36. Moon DC, Choi CH, Lee JH, Choi C-W, Kim H-Y et al. Acinetobacter baumannii outer membrane protein A modulates the biogenesis of outer membrane vesicles. J Microbiol. 2012; 50:155–160 [CrossRef]
    [Google Scholar]
  37. Wu X, Chavez JD, Schweppe DK, Zheng C, Weisbrod CR et al. In vivo protein interaction network analysis reveals porin-localized antibiotic inactivation in Acinetobacter baumannii strain AB5075. Nat Commun 2016; 7:13414 [CrossRef]
    [Google Scholar]
  38. Nafarieh T, Bandehpour M, Hashemi A, Taheri S, Yardel V et al. Identification of antigens from nosocomial Acinetobacter baumannii clinical isolates in sera from ICU staff and infected patients using the antigenome technique. World J Microbiol Biotechnol 2017; 33:189 [CrossRef]
    [Google Scholar]
  39. Levert M, Zamfir O, Clermont O, Bouvet O, Lespinats S et al. Molecular and evolutionary bases of within‐patient genotypic and phenotypic diversity in Escherichia coli extraintestinal infections. PLoS Pathog 2010; 6:e1001125 [CrossRef]
    [Google Scholar]
  40. Ferenci T, Phan K. How porin heterogeneity and trade-offs affect the antibiotic susceptibility of gram-negative bacteria. Genes 2015; 6:1113–1124 [CrossRef]
    [Google Scholar]
  41. Grizot S, Buchanan SK. Structure of the OmpA-like domain of RmpM from Neisseria meningitidis. Mol Microbiol 2004; 51:1027–1037 [CrossRef]
    [Google Scholar]
  42. Pirnay J-P, Vos DD, Mossialos D, Vanderkelen A, Cornelis P et al. Analysis of the Pseudomonas aeruginosa oprD gene from clinical and environmental isolates. Environ Microbiol 2002; 4:872–882 [CrossRef]
    [Google Scholar]
  43. Hao W. Unrecognized fine-scale recombination can mimic the effects of adaptive radiation. Gene 2013; 518:483–488 [CrossRef]
    [Google Scholar]
  44. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [CrossRef]
    [Google Scholar]
  45. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [CrossRef]
    [Google Scholar]
  46. Martin DP, Murrell B, Khoosal A, Muhire B. Detecting and analyzing genetic recombination using RDP4. Methods Mol Biol 2017; 1525:433–460
    [Google Scholar]
  47. Martin D, Rybicki E. RDP: detection of recombination amongst aligned sequences. Bioinformatics 2000; 16:562–563 [CrossRef]
    [Google Scholar]
  48. Padidam M, Sawyer S, Fauquet CM. Possible emergence of new geminiviruses by frequent recombination. Virology 1999; 265:218–225 [CrossRef]
    [Google Scholar]
  49. Posada D, Crandall KA. Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci U S A 2001; 98:13757–13762 [CrossRef]
    [Google Scholar]
  50. Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007; 24:1586–1591 [CrossRef]
    [Google Scholar]
  51. Yang Z, Swanson WJ. Codon-Substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. Mol Biol Evol 2002; 19:49–57 [CrossRef]
    [Google Scholar]
  52. Schaub IG, Hauber FD. A biochemical and serological study of a group of identical unidentifiable gram-negative bacilli from human sources. J Bacteriol 1948; 56:379–385 [CrossRef]
    [Google Scholar]
  53. Piechaud M, Second L. Studies of 26 strains of Moraxella lwoffi. Ann Inst Pasteur 1951; 80:97–99
    [Google Scholar]
  54. Repizo GD, Viale AM, Borges V, Cameranesi MM, Taib N et al. The Environmental Acinetobacter baumannii Isolate DSM30011 Reveals Clues into the Preantibiotic Era Genome Diversity, Virulence Potential, and Niche Range of a Predominant Nosocomial Pathogen. Genome Biol Evol 2017; 9:2292–2307 [CrossRef]
    [Google Scholar]
  55. Chan CX, Beiko RG, Darling AE, Ragan MA. Lateral transfer of genes and gene fragments in prokaryotes. Genome Biol Evol 2009; 1:429–438 [CrossRef]
    [Google Scholar]
  56. Nielsen KM, Smalla K, van Elsas JD. Natural transformation of Acinetobacter sp. strain BD413 with cell lysates of Acinetobacter sp., Pseudomonas fluorescens, and Burkholderia cepacia in soil microcosms. Appl Environ Microbiol 2000; 66:206–212 [CrossRef]
    [Google Scholar]
  57. Hülter N, Wackernagel W. Double illegitimate recombination events integrate DNA segments through two different mechanisms during natural transformation of Acinetobacter baylyi. Mol Microbiol 2008; 67:984–995 [CrossRef]
    [Google Scholar]
  58. Overballe-Petersen S, Harms K, Orlando LAA, Mayar JVM, Rasmussen S et al. Bacterial natural transformation by highly fragmented and damaged DNA. Proc Natl Acad Sci U S A 2013; 110:19860‐519865 [CrossRef]
    [Google Scholar]
  59. Fierer N, Hamady M, Lauber CL, Knight R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A 2008; 105:17994‐9.17999 [CrossRef]
    [Google Scholar]
  60. Rooney AP, Dunlap CA, Flor-Weiler LB. Acinetobacter lactucae sp. nov., isolated from iceberg lettuce (Asteraceae: Lactuca sativa). Int J Syst Evol Microbiol 2016; 66:3566–3572 [CrossRef]
    [Google Scholar]
  61. Kang Y-S, Jung J, Jeon CO, Park W. Acinetobacter oleivorans sp. nov. is capable of adhering to and growing on diesel-oil. J Microbiol 2011; 49:29–34 [CrossRef]
    [Google Scholar]
  62. Tanji Y, Gennity J, Pollitt S, Inouye M. Effect of OmpA signal peptide mutations on OmpA secretion, synthesis, and assembly. J Bacteriol 1991; 173:1997–2005 [CrossRef]
    [Google Scholar]
  63. Kwon HI, Kim S, Oh MH, Na SH, Kim YJ et al. Outer membrane protein A contributes to antimicrobial resistance of Acinetobacter baumannii through the OmpA-like domain. J Antimicrob Chemother 2017; 72:3012–3015 [CrossRef][PubMed]
    [Google Scholar]
  64. Rath A, Johnson RM, Deber CM. Peptides as transmembrane segments: decrypting the determinants for helix–helix interactions in membrane proteins. Biopolymers 2007; 88:217–232 [CrossRef]
    [Google Scholar]
  65. Fernández-Cuenca F, Tomás M, Caballero-Moyano F-J, Bou G, Martínez-Martínez L et al. Reduced susceptibility to biocides in Acinetobacter baumannii: association with resistance to antimicrobials, epidemiological behaviour, biological cost and effect on the expression of genes encoding porins and efflux pumps. J Antimicrob Chemother 2015; 70:3222–3229 [CrossRef]
    [Google Scholar]
  66. Wang‐Lin SX, Olson R, Beanan JM, MacDonald U, Balthasar JP et al. The Capsular 790 Polysaccharide of Acinetobacter baumannii Is an Obstacle for Therapeutic Passive Immunization Strategies. Infect Immun 2017; 85:pii: e00591
    [Google Scholar]
  67. Wang S-nan, Cheng Z-xue, Ling X-peng, Chu X, Peng X-xian et al. Construction, immune protection and innate immune response of shuffled polyvalent ompAs vaccines. Fish Shellfish Immunol 2018; 74:325–331 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000381
Loading
/content/journal/mgen/10.1099/mgen.0.000381
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error