1887

Abstract

The three common intestinal species in cattle differ significantly in host range, pathogenicity and public health significance. While is pathogenic in pre-weaned calves and has a broad host range, and are largely non-pathogenic and bovine-specific species in post-weaned calves. Thus far, only the genome of has been sequenced. To improve our understanding of the genetic determinants of biological differences among spcies, we sequenced the genomes of and and conducted a comparative genomics analysis. The genome of has a gene content and organization more similar to than to other species sequenced to date; the level of similarity in amino acid and nucleotide sequences between the two species is 75.2 and 69.4 %, respectively. A total of 3723 and 3711 putative protein-encoding genes were identified in the genomes of and , respectively, which are fewer than the 3981 in . Metabolism is similar among the three species, although energy production pathways are further reduced in and . Compared with , and have lost 14 genes encoding mucin-type glycoproteins and three for insulinase-like proteases. Other gene gains and losses in the two bovine-specific and non-pathogenic species also involve the secretory pathogenesis determinants (SPDs); they have lost all genes encoding MEDLE, FLGN and SKSR proteins, and two of the three genes for NFDQ proteins, but have more genes encoding secreted WYLE proteins, secreted leucine-rich proteins and GPI-anchored adhesin PGA18. The only major difference between and is in nucleotide metabolism. In addition, half of the highly divergent genes between and encode secreted or membrane-bound proteins. Therefore, and have gene organization and metabolic pathways similar to , but have lost some invasion-associated mucin glycoproteins, insulinase-like proteases, MEDLE secretory proteins and other SPDs. The multiple gene families under positive selection, such as helicase-associated domains, AMP-binding domains, protein kinases, mucins, insulinases and TRAPs could contribute to differences in host specificity and pathogenicity between and . Biological studies should be conducted to assess the contribution of these copy number variations to the narrow host range and reduced pathogenicity of and .

Funding
This study was supported by the:
  • Lihua Xiao , The 111 Project , (Award D2008)
  • Not Applicable , National Key R&D Program of China , (Award 2017YFD0500404)
  • Not Applicable , National Natural Science Foundation of China , (Award 31602042)
  • Not Applicable , National Natural Science Foundation of China , (Award 31630078)
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000379
2020-05-14
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10.1099/mgen.0.000379/mgen000379.html?itemId=/content/journal/mgen/10.1099/mgen.0.000379&mimeType=html&fmt=ahah

References

  1. Checkley W, White AC, Jaganath D, Arrowood MJ, Chalmers RM et al. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium . Lancet Infect Dis 2015; 15: 85 94 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  2. Chalmers RM, Davies AP. Minireview: clinical cryptosporidiosis. Exp Parasitol 2010; 124: 138 146 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  3. Santín M. Clinical and subclinical infections with Cryptosporidium in animals. N Z Vet J 2013; 61: 1 10 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  4. Xiao L. Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol 2010; 124: 80 89 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  5. Feng Y, Ryan UM, Xiao L. Genetic diversity and population structure of Cryptosporidium . Trends Parasitol 2018; 34: 997 1011 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  6. Rieux A, Paraud C, Pors I, Chartier C. Molecular characterization of Cryptosporidium isolates from beef calves under one month of age over three successive years in one herd in western France. Vet Parasitol 2014; 202: 171 179 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  7. Fayer R, Santin M, Trout JM. Prevalence of Cryptosporidium species and genotypes in mature dairy cattle on farms in eastern United States compared with younger cattle from the same locations. Vet Parasitol 2007; 145: 260 266 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  8. Santín M, Trout JM, Fayer R. A longitudinal study of cryptosporidiosis in dairy cattle from birth to 2 years of age. Vet Parasitol 2008; 155: 15 23 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  9. Ralston B, Thompson RCA, Pethick D, McAllister TA, Olson ME. Cryptosporidium andersoni in Western Australian feedlot cattle. Aust Vet J 2010; 88: 458 460 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  10. Guo Y, Tang K, Rowe LA, Li N, Roellig DM et al. Comparative genomic analysis reveals occurrence of genetic recombination in virulent Cryptosporidium hominis subtypes and telomeric gene duplications in Cryptosporidium parvum . BMC Genomics 2015; 16: 320 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  11. Liu S, Roellig DM, Guo Y, Li N, Frace MA et al. Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium . BMC Genomics 2016; 17: 1006 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  12. Fei J, Wu H, Su J, Jin C, Li N et al. Characterization of MEDLE-1, a protein in early development of Cryptosporidium parvum . Parasit Vectors 2018; 11: 312 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  13. Su J, Jin C, Wu H, Fei J, Li N et al. Differential expression of three Cryptosporidium species-specific MEDLE proteins. Front Microbiol 2019; 10: 1177 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  14. Zhang S, Wang Y, Wu H, Li N, Jiang J et al. Characterization of a species-specific insulinase-like protease in Cryptosporidium parvum . Front Microbiol 2019; 10: 354 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  15. Bouzid M, Hunter PR, Chalmers RM, Tyler KM. Cryptosporidium pathogenicity and virulence. Clin Microbiol Rev 2013; 26: 115 134 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  16. Xu Z, Guo Y, Roellig DM, Feng Y, Xiao L. Comparative analysis reveals conservation in genome organization among intestinal Cryptosporidium species and sequence divergence in potential secreted pathogenesis determinants among major human-infecting species. BMC Genomics 2019; 20: 406 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  17. Feng Y, Li N, Roellig DM, Kelley A, Liu G et al. Comparative genomic analysis of the IId subtype family of Cryptosporidium parvum . Int J Parasitol 2017; 47: 281 290 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  18. Zhang S, Chen L, Li F, Li N, Feng Y et al. Divergent Copies of a Cryptosporidium parvum-Specific Subtelomeric Gene. Microorganisms 2019; 7: E366 366 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  19. Nader JL, Mathers TC, Ward BJ, Pachebat JA, Swain MT et al. Evolutionary genomics of anthroponosis in Cryptosporidium . Nat Microbiol 2019; 4: 826 836 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  20. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum . Science 2004; 304: 441 445 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  21. Ifeonu OO, Chibucos MC, Orvis J, Su Q, Elwin K et al. Annotated draft genome sequences of three species of Cryptosporidium: Cryptosporidium meleagridis isolate UKMEL1, C. baileyi isolate TAMU-09Q1 and C. hominis isolates TU502_2012 and UKH1. Pathog Dis 2016; 74: ftw080 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  22. Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM et al. The genome of Cryptosporidium hominis . Nature 2004; 431: 1107 1112 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  23. Xiao L, Escalante L, Yang C, Sulaiman I, Escalante AA et al. Phylogenetic analysis of Cryptosporidium parasites based on the small-subunit rRNA gene locus. Appl Environ Microbiol 1999; 65: 1578 1583 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  24. Guo Y, Cebelinski E, Matusevich C, Alderisio KA, Lebbad M et al. Subtyping novel zoonotic pathogen Cryptosporidium chipmunk genotype I. J Clin Microbiol 2015; 53: 1648 1654 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  25. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010; 5: e11147 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  26. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R et al. Circos: an information aesthetic for comparative genomics. Genome Res 2009; 19: 1639 1645 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  27. Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res 2005; 33: 6494 6506 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  28. Stanke M, Steinkamp R, Waack S, Morgenstern B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res 2004; 32: W309 W312 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  29. Parra G, Blanco E, Guigó R. Geneid in Drosophila. Genome Res 2000; 10: 511 515 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  30. Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol 2008; 9: R7 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  31. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403 410 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  32. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011; 8: 785 786 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  33. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001; 305: 567 580 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  34. Fankhauser N, Mäser P. Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformatics 2005; 21: 1846 1852 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  35. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007; 35: W182 W185 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  36. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY et al. Pfam: the protein families database. Nucleic Acids Res 2014; 42: D222 D230 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  37. Shanmugasundram A, Gonzalez-Galarza FF, Wastling JM, Vasieva O, Jones AR. Library of apicomplexan metabolic pathways: a manually curated database for metabolic pathways of apicomplexan parasites. Nucleic Acids Res 2013; 41: D706 D713 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  38. Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003; 13: 2178 2189 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  39. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32: 1792 1797 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  40. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17: 540 552 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  41. Stamatakis A, Ludwig T, Meier H. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 2005; 21: 456 463 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  42. DeBarry JD, Kissinger JC. Jumbled genomes: missing apicomplexan synteny. Mol Biol Evol 2011; 28: 2855 2871 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  43. Song C, Chiasson MA, Nursimulu N, Hung SS, Wasmuth J et al. Metabolic reconstruction identifies strain-specific regulation of virulence in Toxoplasma gondii . Mol Syst Biol 2013; 9: 708 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  44. Moreno SNJ, Li Z-H. Anti-infectives targeting the isoprenoid pathway of Toxoplasma gondii . Expert Opin Ther Targets 2008; 12: 253 263 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  45. McConkey GA, Pinney JW, Westhead DR, Plueckhahn K, Fitzpatrick TB et al. Annotating the Plasmodium genome and the enigma of the shikimate pathway. Trends Parasitol 2004; 20: 60 65 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  46. Lendner M, Daugschies A. Cryptosporidium infections: molecular advances. Parasitology 2014; 141: 1511 1532 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  47. Reid AJ. Large, rapidly evolving gene families are at the forefront of host-parasite interactions in Apicomplexa. Parasitology 2015; 142 Suppl 1: S57 S70 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  48. Wasmuth JD, Pszenny V, Haile S, Jansen EM, Gast AT et al. Integrated bioinformatic and targeted deletion analyses of the SRS gene superfamily identify SRS29C as a negative regulator of Toxoplasma virulence. mBio 2012; 3: e00321-12 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  49. Lorenzi H, Khan A, Behnke MS, Namasivayam S, Swapna LS et al. Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes. Nat Commun 2016; 7: 10147 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  50. Mazurie AJ, Alves JM, Ozaki LS, Zhou S, Schwartz DC et al. Comparative genomics of Cryptosporidium . Int J Genomics 2013; 2013: 832756 8 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  51. Isaza JP, Galván AL, Polanco V, Huang B, Matveyev AV et al. Revisiting the reference genomes of human pathogenic Cryptosporidium species: reannotation of C. parvum Iowa and a new C. hominis reference. Sci Rep 2015; 5: 16324 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
  52. Zapata F, Perkins ME, Riojas YA, Wu TW, Le Blancq SM. The Cryptosporidium parvum ABC protein family. Mol Biochem Parasitol 2002; 120: 157 161 [CrossRef] [PubMed] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000379
Loading
/content/journal/mgen/10.1099/mgen.0.000379
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error