1887

Abstract

The Arctic is warming – fast. Microbes in the Arctic play pivotal roles in feedbacks that magnify the impacts of Arctic change. Understanding the genome evolution, diversity and dynamics of Arctic microbes can provide insights relevant for both fundamental microbiology and interdisciplinary Arctic science. Within this synthesis, we highlight four key areas where genomic insights to the microbial dimensions of Arctic change are urgently required: the changing Arctic Ocean, greenhouse gas release from the thawing permafrost, 'biological darkening' of glacial surfaces, and human activities within the Arctic. Furthermore, we identify four principal challenges that provide opportunities for timely innovation in Arctic microbial genomics. These range from insufficient genomic data to develop unifying concepts or model organisms for Arctic microbiology to challenges in gaining authentic insights to the structure and function of low-biomass microbiota and integration of data on the causes and consequences of microbial feedbacks across scales. We contend that our insights to date on the genomics of Arctic microbes are limited in these key areas, and we identify priorities and new ways of working to help ensure microbial genomics is in the vanguard of the scientific response to the Arctic crisis.

Funding
This study was supported by the:
  • Karen A. Cameron , H2020 Marie Skłodowska-Curie Actions , (Award 663830)
  • Melanie C. Hay , H2020 Marie Skłodowska-Curie Actions , (Award 675546)
  • Arwyn Edwards , Leverhulme Trust , (Award RF-2017-652\2)
  • Arwyn Edwards , Natural Environment Research Council , (Award NE/S1001034/1)
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000375
2020-05-11
2020-09-18
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/5/mgen000375.html?itemId=/content/journal/mgen/10.1099/mgen.0.000375&mimeType=html&fmt=ahah

References

  1. Box JE, Colgan WT, Christensen TR, Schmidt NM, Lund M et al. Key indicators of Arctic climate change: 1971–2017. Environ Res Lett 2019; 14:045010 [CrossRef]
    [Google Scholar]
  2. Gillett NP, Stone DA, Stott PA, Nozawa T, Karpechko AY et al. Attribution of polar warming to human influence. Nat Geosci 2008; 1:750754 [CrossRef]
    [Google Scholar]
  3. Cvijanovic I, Santer BD, Bonfils C, Lucas DD, Chiang JCH et al. Future loss of Arctic sea-ice cover could drive a substantial decrease in California’s rainfall. Nat Commun 2017; 8:1947 [CrossRef]
    [Google Scholar]
  4. Coumou D, Di Capua G, Vavrus S, Wang L, Wang S. The influence of Arctic amplification on mid-latitude summer circulation. Nat Commun 2018; 9:2959 [CrossRef]
    [Google Scholar]
  5. Tang Q, Zhang X, Yang X, Francis JA. Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ Res Lett 2013; 8:014036 [CrossRef]
    [Google Scholar]
  6. IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Geneva: Intergovernmental Panel on Climate Change; 2014
    [Google Scholar]
  7. Wvd B, Bakke J, Smedsrud LH, Sund M, Schuler T. Climate in Svalbard 2100 Norway: Norwegian Centre for Climate Services; 2019
    [Google Scholar]
  8. IPCC Summary for policymakers. Special Report on the Ocean and Cryosphere in a Changing Climate Geneva: Intergovernmental Panel on Climate Change; 2019
    [Google Scholar]
  9. Post E, Alley RB, Christensen TR, Macias-Fauria M, Forbes BC et al. The polar regions in a 2°C warmer world. Sci Adv 2019; 5:eaaw9883 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  10. Vincent WF. Microbial ecosystem responses to rapid climate change in the Arctic. Isme J 2010; 4:1087–1090 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  11. Dinasquet J, Ortega-Retuerta E, Lovejoy C, Obernosterer I. Microbiology of the rapidly changing polar environments. Front Mar Sci 2018; 5:154 [CrossRef]
    [Google Scholar]
  12. Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 2019; 17:569–586 [CrossRef]
    [Google Scholar]
  13. Anesio AM, Sattler B, Foreman C, Telling J, Hodson A et al. Carbon fluxes through bacterial communities on glacier surfaces. Annals Glaciol 2010; 51:32–40 [CrossRef]
    [Google Scholar]
  14. Hill R, Saetnan ER, Scullion J, Gwynn-Jones D, Ostle N et al. Temporal and spatial influences incur reconfiguration of Arctic heathland soil bacterial community structure. Environ Microbiol 2016; 18:1942–1953 [CrossRef]
    [Google Scholar]
  15. Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 2015; 13:677–690 [CrossRef]
    [Google Scholar]
  16. Mackelprang R, Saleska SR, Jacobsen CS, Jansson JK, Taş N. Permafrost meta-omics and climate change. Annu Rev Earth Planet Sci 2016; 44:439–462 [CrossRef]
    [Google Scholar]
  17. Bakermans C. Limits for microbial life at subzero temperatures. In Margesin R, Schinner F, Marx JC, Gerday C. eds Psychrophiles: from Biodiversity to Biotechnology Berlin, Heidelberg: Springer; 2008 pp 17–28
    [Google Scholar]
  18. Schuur EAG, McGuire AD, Schädel C, Grosse G, Harden JW et al. Climate change and the permafrost carbon feedback. Nature 2015; 520:171–179 [CrossRef]
    [Google Scholar]
  19. Anesio AM, Hodson AJ, Fritz A, Psenner R, Sattler B. High microbial activity on glaciers: importance to the global carbon cycle. Glob Chang Biol 2009; 15:955–960 [CrossRef]
    [Google Scholar]
  20. Colatriano D, Tran PQ, Guéguen C, Williams WJ, Lovejoy C et al. Genomic evidence for the degradation of terrestrial organic matter by pelagic Arctic Ocean Chloroflexi bacteria. Commun Biol 2018; 1:90 [CrossRef]
    [Google Scholar]
  21. Pasteur L, Joubert J, Chamberland C. The germ theory of disease. CR Hebd Seances Acad Sci 1878; 86:1037–1052
    [Google Scholar]
  22. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 2016; 530:228–232 [CrossRef]
    [Google Scholar]
  23. Leary D. Bioprospecting in the Arctic Yokohama: United Nations University – Institute of Advanced Studies; 2008
    [Google Scholar]
  24. Curry JA, Schramm JL, Ebert EE. Sea ice-albedo climate feedback mechanism. J Clim 1995; 8:240–247 [CrossRef]
    [Google Scholar]
  25. Screen JA, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 2010; 464:1334–1337 [CrossRef]
    [Google Scholar]
  26. Krembs C, Engel A. Abundance and variability of microorganisms and transparent exopolymer particles across the ice-water interface of melting first-year sea ice in the Laptev sea (Arctic). Mar Biol 2001; 138:173–185 [CrossRef]
    [Google Scholar]
  27. Junge K, Eicken H, Deming JW. Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. Appl Environ Microbiol 2004; 70:550–557 [CrossRef]
    [Google Scholar]
  28. Collins RE, Rocap G, Deming JW. Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ Microbiol 2010; 12:1828–1841 [CrossRef]
    [Google Scholar]
  29. Aslam SN, Michel C, Niemi A, Underwood GJC. Patterns and drivers of carbohydrate budgets in ice algal assemblages from first year Arctic sea ice. Limnol Oceanogr 2016; 61:919–937 [CrossRef]
    [Google Scholar]
  30. Mock T, Otillar RP, Strauss J, McMullan M, Paajanen P et al. Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 2017; 541:536540 [CrossRef]
    [Google Scholar]
  31. Deming JW, Collins RE. Sea ice as a habitat for bacteria, archaea and viruses. In: Sea Ice. New York: Wiley; 2016 pp 326–351
    [Google Scholar]
  32. Comeau AM, Philippe B, Thaler M, Gosselin M, Poulin M et al. Protists in Arctic drift and land-fast sea ice. J Phycol 2013; 49:229–240 [CrossRef]
    [Google Scholar]
  33. Poulin M, Daugbjerg N, Gradinger R, Ilyash L, Ratkova T et al. The pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: a first-attempt assessment. Marine Biodiversity 2011; 41:13–28 [CrossRef]
    [Google Scholar]
  34. Boetius A, Albrecht S, Bakker K, Bienhold C, Felden J et al. Export of algal biomass from the melting Arctic sea ice. Science 2013; 339:1430–1432 [CrossRef]
    [Google Scholar]
  35. Grebmeier JM et al. A major ecosystem shift in the Northern Bering Sea. Science 2006; 311:1461–1464 [CrossRef]
    [Google Scholar]
  36. Bowman JS, Rasmussen S, Blom N, Deming JW, Rysgaard S et al. Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene. Isme J 2012; 6:1120 [CrossRef]
    [Google Scholar]
  37. Eronen-Rasimus E, Piiparinen J, Karkman A, Lyra C, Gerland S et al. Bacterial communities in Arctic first-year drift ice during the winter/spring transition. Environ Microbiol Rep 2016; 8:527–535 [CrossRef]
    [Google Scholar]
  38. Kwok R, Cunningham G. Contribution of melt in the Beaufort Sea to the decline in Arctic multiyear sea ice coverage: 1993–2009. Geophys Res Lett 2010; 37:L20501
    [Google Scholar]
  39. Comeau AM, Li WKW, Tremblay Jean-Éric, Carmack EC, Lovejoy C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS One 2011; 6:e27492 [CrossRef]
    [Google Scholar]
  40. Thomas F, Hehemann J-H, Rebuffet E, Czjzek M, Michel G. Environmental and gut Bacteroidetes: the food connection. Front Microbiol 2011; 2:fmicb.2011.00093 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  41. Kraemer S, Ramachandran A, Colatriano D, Lovejoy C, Walsh D. Diversity, biogeography, and evidence for endemism of SAR11 bacteria from the Arctic Ocean.. bioRxiv 2019; 517433:
    [Google Scholar]
  42. Pointing SB, Büdel B, Convey P, Gillman LN, Körner C et al. Biogeography of photoautotrophs in the high polar biome. Front Plant Sci 2015; 6:692 [CrossRef]
    [Google Scholar]
  43. Pedrós-Alió C, Potvin M, Lovejoy C. Diversity of planktonic microorganisms in the Arctic Ocean. Prog Oceanogr 2015; 139:233–243 [CrossRef]
    [Google Scholar]
  44. Paulsen ML, Doré H, Garczarek L, Seuthe L, Müller O et al. Synechococcus in the Atlantic gateway to the Arctic Ocean. Front Mar Sci 2016; 3:191 [CrossRef]
    [Google Scholar]
  45. Cottrell MT, Kirchman DL. Photoheterotrophic microbes in the Arctic Ocean in summer and winter. Appl Environ Microbiol 2009; 75:4958–4966 [CrossRef]
    [Google Scholar]
  46. Gradinger R, Lenz J. Seasonal occurrence of picocyanobacteria in the Greenland Sea and central Arctic Ocean. Polar Biol 1995; 15:447–452 [CrossRef]
    [Google Scholar]
  47. Huang S, Wilhelm SW, Harvey HR, Taylor K, Jiao N et al. Novel lineages of Prochlorococcus and Synechococcus in the global oceans. Isme J 2012; 6:285297 [CrossRef]
    [Google Scholar]
  48. Berge J, Daase M, Renaud PE, Ambrose WG, Darnis G et al. Unexpected levels of biological activity during the polar night offer new perspectives on a warming Arctic. Curr Biol 2015; 25:2555–2561 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  49. Berge J, Renaud PE, Darnis G, Cottier F, Last K et al. In the dark: a review of ecosystem processes during the Arctic polar night. Prog Oceanogr 2015; 139:258–271 [CrossRef]
    [Google Scholar]
  50. Dobinski W. Permafrost. Earth Sci Rev 2011; 108:158–169 [CrossRef]
    [Google Scholar]
  51. Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 2011; 480:368–371 [CrossRef]
    [Google Scholar]
  52. Koven CD, Riley WJ, Stern A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth system models. J Clim 2013; 26:1877–1900 [CrossRef]
    [Google Scholar]
  53. Graham DE, Wallenstein MD, Vishnivetskaya TA, Waldrop MP, Phelps TJ et al. Microbes in thawing permafrost: the unknown variable in the climate change equation. Isme J 2012; 6:709712 [CrossRef]
    [Google Scholar]
  54. Parmentier F-JW, Christensen TR, Rysgaard S, Bendtsen J, Glud RN et al. A synthesis of the Arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere. Ambio 2017; 46:53–69 [CrossRef]
    [Google Scholar]
  55. Vonk JE, Tank SE, Walvoord MA. Integrating hydrology and biogeochemistry across frozen landscapes. Nat Commun 2019; 10:5377 [CrossRef]
    [Google Scholar]
  56. Frey KE, McClelland JW. Impacts of permafrost degradation on Arctic river biogeochemistry. Hydrol Process 2009; 23:169–182 [CrossRef]
    [Google Scholar]
  57. Vonk JE, Sánchez-García L, van Dongen BE, Alling V, Kosmach D et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 2012; 489:137140 [CrossRef]
    [Google Scholar]
  58. Müller O, Seuthe L, Bratbak G, Paulsen ML. Bacterial response to permafrost derived organic matter input in an Arctic fjord. Front Mar Sci 2018; 5:263 [CrossRef]
    [Google Scholar]
  59. von Scheibner M, Sommer U, Jürgens K. Tight coupling of Glaciecola spp. and diatoms during cold-water phytoplankton spring blooms. Front Microbiol 2017; 8:27 [CrossRef]
    [Google Scholar]
  60. Wilson B, Müller O, Nordmann E-L, Seuthe L, Bratbak G et al. Changes in marine prokaryote composition with season and depth over an Arctic polar year. Front Mar Sci 2017; 4:95 [CrossRef]
    [Google Scholar]
  61. Jansson JK, Taş N. The microbial ecology of permafrost. Nat Rev Microbiol 2014; 12:414–425 [CrossRef]
    [Google Scholar]
  62. Froese DG, Westgate JA, Reyes AV, Enkin RJ, Preece SJ. Ancient permafrost and a future, warmer Arctic. Science 2008; 321:1648 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  63. Mackelprang R, Burkert A, Haw M, Mahendrarajah T, Conaway CH et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. Isme J 2017; 11:2305–2318 [CrossRef]
    [Google Scholar]
  64. Burkert A, Douglas TA, Waldrop MP, Mackelprang R. Changes in the active, dead, and dormant microbial community structure across a Pleistocene permafrost chronosequence. Appl Environ Microbiol 2019; 85:e02646-18 [CrossRef]
    [Google Scholar]
  65. Nikrad MP, Kerkhof LJ, Häggblom MM. The subzero microbiome: microbial activity in frozen and thawing soils. FEMS Microbiol Ecol 2016; 92:fiw081 [CrossRef]
    [Google Scholar]
  66. Tuorto SJ, Darias P, McGuinness LR, Panikov N, Zhang T et al. Bacterial genome replication at subzero temperatures in permafrost. Isme J 2014; 8:139–149 [CrossRef]
    [Google Scholar]
  67. Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 2015; 521:208–212 [CrossRef]
    [Google Scholar]
  68. Schostag M, Priemé A, Jacquiod S, Russel J, Ekelund F et al. Bacterial and protozoan dynamics upon thawing and freezing of an active layer permafrost soil. Isme J 2019; 13:13451359 [CrossRef]
    [Google Scholar]
  69. Müller O, Bang‐Andreasen T, White RA, Elberling B, Taş N et al. Disentangling the complexity of permafrost soil by using high resolution profiling of microbial community composition, key functions and respiration rates. Environ Microbiol 2018; 20:4328–4342 [CrossRef]
    [Google Scholar]
  70. Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB et al. Genome-centric view of carbon processing in thawing permafrost. Nature 2018; 560:4954 [CrossRef]
    [Google Scholar]
  71. Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol 2018; 3:870–880 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  72. Moosavi SC, Crill PM. CH 4 oxidation by tundra wetlands as measured by a selective inhibitor technique. J Geophys Res 1998; 103:29093–29106 [CrossRef]
    [Google Scholar]
  73. Liebner S, Rublack K, Stuehrmann T, Wagner D. Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena delta, Siberia. Microb Ecol 2009; 57:25–35 [CrossRef]
    [Google Scholar]
  74. Popp TJ, Chanton JP, Whiting GJ, Grant N. Evaluation of methane oxidation in therhizosphere of a Carex dominated fen in northcentral Alberta, Canada. Biogeochemistry 2000; 51:259–281 [CrossRef]
    [Google Scholar]
  75. Singleton CM, McCalley CK, Woodcroft BJ, Boyd JA, Evans PN et al. Methanotrophy across a natural permafrost thaw environment. Isme J 2018; 12:25442558 [CrossRef]
    [Google Scholar]
  76. Bamber JL, Westaway RM, Marzeion B, Wouters B. The land ice contribution to sea level during the satellite era. Environ Res Lett 2018; 13:063008 [CrossRef]
    [Google Scholar]
  77. Nordenskiöld AE. Redogörelse för en Expedition til Grönland År 1870 Stockholm: Norstedt and Söner; 1870
    [Google Scholar]
  78. Kohshima S. A novel cold-tolerant insect found in a Himalayan glacier. Nature 1984; 310:225–227 [CrossRef]
    [Google Scholar]
  79. Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M et al. Glacial ecosystems. Ecol Monogr 2008; 78:41–67 [CrossRef]
    [Google Scholar]
  80. Irvine-Fynn TDL, Edwards A. A frozen asset: the potential of flow cytometry in constraining the glacial biome. Cytometry A 2014; 85:3–7 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  81. Hamilton TL, Peters JW, Skidmore ML, Boyd ES. Molecular evidence for an active endogenous microbiome beneath glacial ice. Isme J 2013; 7:14021412 [CrossRef]
    [Google Scholar]
  82. Stibal M, Wadham JL, Lis GP, Telling J, Pancost RD et al. Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources. Glob Chang Biol 2012; 18:3332–3345 [CrossRef]
    [Google Scholar]
  83. Boyd ES, Hamilton TL, Havig JR, Skidmore ML, Shock EL. Chemolithotrophic primary production in a subglacial ecosystem. Appl Environ Microbiol 2014; 80:6146–6153 [CrossRef]
    [Google Scholar]
  84. Boyd ES, Skidmore M, Mitchell AC, Bakermans C, Peters JW. Methanogenesis in subglacial sediments. Environ Microbiol Rep 2010; 2:685–692 [CrossRef]
    [Google Scholar]
  85. Dieser M, Broemsen ELJE, Cameron KA, King GM, Achberger A et al. Molecular and biogeochemical evidence for methane cycling beneath the Western margin of the Greenland Ice Sheet. Isme J 2014; 8:23052316 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  86. Michaud AB, Dore JE, Achberger AM, Christner BC, Mitchell AC et al. Microbial oxidation as a methane sink beneath the West Antarctic ice sheet. Nat Geosci 2017; 10:582586 [CrossRef]
    [Google Scholar]
  87. Lamarche-Gagnon G, Wadham JL, Sherwood Lollar B, Arndt S, Fietzek P et al. Greenland melt drives continuous export of methane from the ice-sheet bed. Nature 2019; 565:7377 [CrossRef]
    [Google Scholar]
  88. Kayani MUR, Doyle SM, Sangwan N, Wang G, Gilbert JA, Christner BC et al. Metagenomic analysis of basal ice from an Alaskan glacier. Microbiome 2018; 6:123 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  89. Lutz S, Anesio AM, Edwards A, Benning LG. Linking microbial diversity and functionality of Arctic glacial surface habitats. Environ Microbiol 2017; 19:551-565 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  90. Irvine-Fynn TDL, Edwards A, Newton S, Langford H, Rassner SM et al. Microbial cell budgets of an Arctic glacier surface quantified using flow cytometry. Environ Microbiol 2012; 14:2998–3012 [CrossRef]
    [Google Scholar]
  91. Lutz S, Anesio AM, Raiswell R, Edwards A, Newton RJ et al. The biogeography of red snow microbiomes and their role in melting Arctic glaciers. Nat Commun 2016; 7:11968 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  92. Lutz S, Anesio AM, Jorge Villar SE, Benning LG. Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol Ecol 2014; 89:402–414 [CrossRef]
    [Google Scholar]
  93. Ryan JC, Hubbard A, Stibal M, Irvine-Fynn TD, Cook J et al. Dark zone of the Greenland ice sheet controlled by distributed biologically-active impurities. Nat Commun 2018; 9:1065 [CrossRef]
    [Google Scholar]
  94. Cook JM, Tedstone AJ, Williamson C, McCutcheon J, Hodson AJ et al. Glacier algae accelerate melt rates on the south-western Greenland ice sheet. Cryosphere 2019; 14:309–330 [CrossRef]
    [Google Scholar]
  95. Hell K, Edwards A, Zarsky J, Podmirseg SM, Girdwood S et al. The dynamic bacterial communities of a melting high Arctic glacier snowpack. Isme J 2013; 7:1814–1826 [CrossRef]
    [Google Scholar]
  96. Maccario L, Vogel TM, Larose C. Potential drivers of microbial community structure and function in Arctic spring snow. Front Microbiol 2014; 5:413 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  97. Cameron KA, Hagedorn B, Dieser M, Christner BC, Choquette K et al. Diversity and potential sources of microbiota associated with snow on western portions of the Greenland ice sheet. Environ Microbiol 2015; 17:594–609 [CrossRef]
    [Google Scholar]
  98. Redeker KR, Chong JPJ, Aguion A, Hodson A, Pearce DA. Microbial metabolism directly affects trace gases in (sub) polar snowpacks. J R Soc Interface 2017; 14:20170729 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  99. Gokul JK, Cameron KA, Irvine-Fynn TDL, Cook JM, Hubbard A et al. Illuminating the dynamic rare biosphere of the Greenland ice sheet's dark zone. FEMS Microbiol Ecol 2019; 95:fiz177 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  100. Dial RJ, Ganey GQ, Skiles SM. What color should glacier algae be? An ecological role for red carbon in the cryosphere. FEMS Microbiol Ecol 2018; 94:fiy007 [CrossRef]
    [Google Scholar]
  101. Lutz S, Anesio AM, Edwards A, Benning LG. Microbial diversity on Icelandic glaciers and ice caps. Front Microbiol 2015; 6:307 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  102. Williamson CJ, Cameron KA, Cook JM, Zarsky JD, Stibal M et al. Glacier algae: a dark past and a darker future. Front Microbiol 2019; 10:524 [CrossRef]
    [Google Scholar]
  103. Yallop ML, Anesio AM, Perkins RG, Cook J, Telling J et al. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. Isme J 2012; 6:2302–2313 [CrossRef]
    [Google Scholar]
  104. Lutz S, McCutcheon J, McQuaid JB, Benning LG. The diversity of ice algal communities on the Greenland ice sheet as revealed by oligotyping. Microb Genom 2018; 4:e000159 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  105. Williamson CJ, Anesio AM, Cook J, Tedstone A, Poniecka E et al. Ice algal bloom development on the surface of the Greenland ice sheet. FEMS Microbiol Ecol 2018; 94:fiy025 [CrossRef]
    [Google Scholar]
  106. Cook JM, Edwards A, Takeuchi N, Irvine-Fynn TDL. Cryoconite: the dark biological secret of the cryosphere. Prog Phys Geogr 2015; 40:66–111
    [Google Scholar]
  107. Cook JM, Edwards A, Bulling M, Mur LAJ, Cook S et al. Metabolome-mediated biocryomorphic evolution promotes carbon fixation in Greenlandic cryoconite holes. Environ Microbiol 2016; 18:4674–4686 [CrossRef]
    [Google Scholar]
  108. Cook J, Edwards A, Hubbard A. Biocryomorphology: integrating microbial processes with ice surface hydrology, topography, and roughness. Front Earth Sci 2015; 3:00078 [CrossRef]
    [Google Scholar]
  109. Cook JM, Sweet M, Cavalli O, Taggart A, Edwards A. Topographic shading influences cryoconite morphodynamics and carbon exchange. Arct Antarct Alp Res 2018; 50:S100014 [CrossRef]
    [Google Scholar]
  110. Langford HJ, Irvine-Fynn TDL, Edwards A, Banwart SA, Hodson AJ. A spatial investigation of the environmental controls over cryoconite aggregation on Longyearbreen glacier, Svalbard. Biogeosciences 2014; 11:5365–5380 [CrossRef]
    [Google Scholar]
  111. Langford H, Hodson A, Banwart S, Bøggild C. The microstructure and biogeochemistry of Arctic cryoconite granules. Annals Glaciol 2010; 51:87–94 [CrossRef]
    [Google Scholar]
  112. Segawa T, Yonezawa T, Edwards A, Akiyoshi A, Tanaka S et al. Biogeography of cryoconite forming cyanobacteria on polar and Asian glaciers. J Biogeogr 2017; 44:2849–2861 [CrossRef]
    [Google Scholar]
  113. Uetake J, Tanaka S, Segawa T, Takeuchi N, Nagatsuka N et al. Microbial community variation in cryoconite granules on Qaanaaq glacier, NW Greenland. FEMS Microbiol Ecol 2016; 92:fiw127 [CrossRef]
    [Google Scholar]
  114. Gokul JK, Hodson AJ, Saetnan ER, Irvine-Fynn TDL, Westall PJ et al. Taxon interactions control the distributions of cryoconite bacteria colonizing a high Arctic ice cap. Mol Ecol 2016; 25:3752–3767 [CrossRef]
    [Google Scholar]
  115. Chrismas NAM, Barker G, Anesio AM, Sánchez-Baracaldo P. Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401. BMC Genomics 2016; 17:533 [CrossRef]
    [Google Scholar]
  116. Rivett DW, Bell T. Abundance determines the functional role of bacterial phylotypes in complex communities. Nat Microbiol 2018; 3:767–772 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  117. Parkinson AJ. Sustainable development, climate change and human health in the Arctic. Int J Circumpolar Health 2010; 69:99–105 [CrossRef]
    [Google Scholar]
  118. Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR. Low-temperature extremophiles and their applications. Curr Opin Biotechnol 2002; 13:253–261 [CrossRef]
    [Google Scholar]
  119. Siddiqui KS, Cavicchioli R. Cold-adapted enzymes. Annu Rev Biochem 2006; 75:403–433 [CrossRef]
    [Google Scholar]
  120. De Francesco G, Sannino C, Sileoni V, Marconi O, Filippucci S et al. Mrakia gelida in brewing process: an innovative production of low alcohol beer using a psychrophilic yeast strain. Food Microbiol 2018; 76:354–362 [CrossRef]
    [Google Scholar]
  121. Kim H, Lee J, Hur Y, Lee C, Park S-H et al. Marine antifreeze proteins: structure, function, and application to cryopreservation as a potential cryoprotectant. Mar Drugs 2017; 15:27 [CrossRef]
    [Google Scholar]
  122. Giudice AL, Fani R. Antimicrobial potential of cold-adapted bacteria and fungi from polar regions. In: Biotechnology of Extremophiles Cham: Springer; 2016 pp 83–115
    [Google Scholar]
  123. Parrilli E, De Vizio D, Cirulli C, Tutino ML. Development of an improved Pseudoalteromonas haloplanktis TAC125 strain for recombinant protein secretion at low temperature. Microb Cell Fact 2008; 7:2 [CrossRef]
    [Google Scholar]
  124. Vester JK, Glaring MA, Stougaard P. Improved cultivation and metagenomics as new tools for bioprospecting in cold environments. Extremophiles 2015; 19:17–29 [CrossRef]
    [Google Scholar]
  125. Ferrer M, Chernikova TN, Yakimov MM, Golyshin PN, Timmis KN. Chaperonins govern growth of Escherichia coli at low temperatures. Nat Biotechnol 2003; 21:12661267 [CrossRef]
    [Google Scholar]
  126. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81W87 [CrossRef]
    [Google Scholar]
  127. McConnell JR, Wilson AI, Stohl A, Arienzo MM, Chellman NJ et al. Lead pollution recorded in Greenland ice indicates European emissions tracked plagues, wars, and imperial expansion during antiquity. Proc Natl Acad Sci USA 2018; 115:5726–5731 [CrossRef]
    [Google Scholar]
  128. Yergeau E, Arbour M, Brousseau R, Juck D, Lawrence JR et al. Microarray and real-time PCR analyses of the responses of high-Arctic soil bacteria to hydrocarbon pollution and bioremediation treatments. Appl Environ Microbiol 2009; 75:6258–6267 [CrossRef]
    [Google Scholar]
  129. García-Moyano A, Austnes AE, Lanzén A, González-Toril E, Aguilera Á et al. Novel and unexpected microbial diversity in acid mine drainage in Svalbard (78° N), revealed by culture-independent approaches. Microorganisms 2015; 3:667–694 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  130. Brown J, Heinrich A, Iosjpe M, Joensen HP, McClelland V. AMAP Assessment 2009: Radioactivity in the Arctic Oslo: Arctic Monitoring and Assessment Programme (AMAP); 2010
    [Google Scholar]
  131. Tieber A, Lettner H, Bossew P, Hubmer A, Sattler B et al. Accumulation of anthropogenic radionuclides in cryoconites on Alpine glaciers. J Environ Radioact 2009; 100:590–598 [CrossRef]
    [Google Scholar]
  132. Stibal M, Bælum J, Holben WE, Sørensen SR, Jensen A et al. Microbial degradation of 2,4-dichlorophenoxyacetic acid on the Greenland ice sheet. Appl Environ Microbiol 2012; 78:5070–5076 [CrossRef]
    [Google Scholar]
  133. Hodson AJ. Understanding the dynamics of black carbon and associated contaminants in glacial systems. WIREs Water 2014; 1:141–149 [CrossRef]
    [Google Scholar]
  134. Larose C, Prestat E, Cecillon S, Berger S, Malandain C et al. Interactions between snow chemistry, mercury inputs and microbial population dynamics in an Arctic snowpack. PLoS One 2013; 8:e79972 [CrossRef]
    [Google Scholar]
  135. Hauptmann AL, Sicheritz-Pontén T, Cameron KA, Bælum J, Plichta DR et al. Contamination of the Arctic reflected in microbial metagenomes from the Greenland ice sheet. Environ Res Lett 2017; 12:074019 [CrossRef]
    [Google Scholar]
  136. Rogers SO, Starmer WT, Castello JD. Recycling of pathogenic microbes through survival in ice. Med Hypotheses 2004; 63:773–777 [CrossRef]
    [Google Scholar]
  137. Edwards A. Coming in from the cold: potential microbial threats from the terrestrial cryosphere. Front Earth Sci 2015; 3:00012 [CrossRef]
    [Google Scholar]
  138. Robinson CH. Cold adaptation in Arctic and Antarctic fungi. New Phytol 2001; 151:341–353 [CrossRef]
    [Google Scholar]
  139. Kolata G. Flu: the Story of the Great Influenza Pandemic of 1918 and the Search for the Virus That Caused It New York: Simon and Schuster; 2001
    [Google Scholar]
  140. Gainer R. Yamal and anthrax. Can Vet J 2016; 57:985–987[PubMed][PubMed]
    [Google Scholar]
  141. Ng TFF, Chen L-F, Zhou Y, Shapiro B, Stiller M et al. Preservation of viral genomes in 700-y-old caribou feces from a subarctic ice patch. Proc Natl Acad Sci USA 2014; 111:16842–16847 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  142. Imperiale MJ, Casadevall A. Vagueness and costs of the pause on gain-of-function (GOF) experiments on pathogens with pandemic potential, including influenza virus. mBio 2014; 5:e02292-14 [CrossRef]
    [Google Scholar]
  143. Parkinson AJ. The International polar year, 2007–2008, an opportunity to focus on infectious diseases in Arctic regions. Emerg Infect Dis 2008; 14:13 [CrossRef]
    [Google Scholar]
  144. Hoover KC, Barker CM. West Nile virus, climate change, and circumpolar vulnerability. WIREs Climate Change 2016; 7:283–300 [CrossRef]
    [Google Scholar]
  145. Gardy JL, Loman NJ. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat Rev Genet 2018; 19:920 [CrossRef]
    [Google Scholar]
  146. Loman NJ, Pallen MJ. Twenty years of bacterial genome sequencing. Nat Rev Microbiol 2015; 13:787–794 [CrossRef]
    [Google Scholar]
  147. Ju K-S, Gao J, Doroghazi JR, Wang K-KA, Thibodeaux CJ et al. Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes. Proc Natl Acad Sci USA 2015; 112:12175–12180 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  148. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 2017; 551:457463 [CrossRef]
    [Google Scholar]
  149. Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB et al. Ecogenomics and potential biogeochemical impacts of globally abundant Ocean viruses. Nature 2016; 537:689693 [CrossRef]
    [Google Scholar]
  150. Farrell J, Rose A. Temperature effects on microorganisms. Annu Rev Microbiol 1967; 21:101–120 [CrossRef]
    [Google Scholar]
  151. Larkin JM, Stokes JL. Isolation of psychrophilic species of Bacillus. J Bacteriol 1966; 91:1667–1671 [CrossRef]
    [Google Scholar]
  152. Mykytczuk NCS, Lawrence JR, Omelon CR, Southam G, Whyte LG. Microscopic characterization of the bacterial cell envelope of Planococcus halocryophilus Or1 during subzero growth at −15 °C. Polar Biol 2016; 39:701–712 [CrossRef]
    [Google Scholar]
  153. Koh HY, Park H, Lee JH, Han SJ, Sohn YC et al. Proteomic and transcriptomic investigations on cold-responsive properties of the psychrophilic Antarctic bacterium Psychrobacter sp. PAMC 21119 at subzero temperatures. Environ Microbiol 2017; 19:628–644 [CrossRef]
    [Google Scholar]
  154. Siddiqui KS, Williams TJ, Wilkins D, Yau S, Allen MA et al. Psychrophiles. Annu Rev Earth Planet Sci 2013; 41:87–115 [CrossRef]
    [Google Scholar]
  155. Cavicchioli R. On the concept of a psychrophile. Isme J 2016; 10:793795 [CrossRef]
    [Google Scholar]
  156. Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML et al. Living at the extremes: extremophiles and the limits of life in a planetary context. Front Microbiol 2019; 10:780 [CrossRef]
    [Google Scholar]
  157. Säwström C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J. The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N). Polar Biol 2002; 25:591–596 [CrossRef]
    [Google Scholar]
  158. Baas-Becking LGM. Geobiologie of Inleiding tot de Milieukunde The Hague: Van Stockum and Zoon; 1934
    [Google Scholar]
  159. de Wit R, Bouvier T. 'Everything is everywhere, but, the environment selects'; what did Baas Becking and Beijerinck really say?. Environ Microbiol 2006; 8:755–758 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  160. van der Gast CJ. Microbial biogeography: the end of the ubiquitous dispersal hypothesis?. Environ Microbiol 2015; 17:544–546 [CrossRef]
    [Google Scholar]
  161. Westengen OT, Jeppson S, Guarino L. Global ex-situ crop diversity conservation and the Svalbard global seed vault: assessing the current status. PLoS One 2013; 8:e64146 [CrossRef]
    [Google Scholar]
  162. Griffith GW. Do we need a global strategy for microbial conservation?. Trends Ecol Evol 2012; 27:1–2 [CrossRef]
    [Google Scholar]
  163. Seshadri R, Leahy SC, Attwood GT, Teh KH, Lambie SC et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 collection. Nat Biotechnol 2018; 36:359367 [CrossRef]
    [Google Scholar]
  164. Chrismas NAM, Anesio AM, Sánchez-Baracaldo P. Multiple adaptations to polar and alpine environments within cyanobacteria: a phylogenomic and Bayesian approach. Front Microbiol 2015; 6:1070 [CrossRef]
    [Google Scholar]
  165. van Dorst J, Bissett A, Palmer AS, Brown M, Snape I et al. Community fingerprinting in a sequencing world. FEMS Microbiol Ecol 2014; 89:316–330 [CrossRef]
    [Google Scholar]
  166. Harding T, Jungblut AD, Lovejoy C, Vincent WF. Microbes in high Arctic snow and implications for the cold biosphere. Appl Environ Microbiol 2011; 77:3234–3243 [CrossRef]
    [Google Scholar]
  167. Šantl-Temkiv T, Gosewinkel U, Starnawski P, Lever M, Finster K. Aeolian dispersal of bacteria in southwest Greenland: their sources, abundance, diversity and physiological states. FEMS Microbiol Ecol 2018; 94:fiy031 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  168. Cuthbertson L, Amores-Arrocha H, Malard L, Els N, Sattler B et al. Characterisation of Arctic bacterial communities in the air above Svalbard. Biology 2017; 6:29 [CrossRef]
    [Google Scholar]
  169. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 2014; 12:87 [CrossRef]
    [Google Scholar]
  170. Eisenhofer R, Minich JJ, Marotz C, Cooper A, Knight R et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol 2019; 27:105117 [CrossRef]
    [Google Scholar]
  171. Weyrich LS, Farrer AG, Eisenhofer R, Arriola LA, Young J et al. Laboratory contamination over time during low‐biomass sample analysis. Mol Ecol Resour 2019; 19:982996 [CrossRef]
    [Google Scholar]
  172. Willerslev E, Hansen AJ, Poinar HN. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evol 2004; 19:141–147 [CrossRef]
    [Google Scholar]
  173. Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 2018; 6:226 [CrossRef]
    [Google Scholar]
  174. Pollock J, Glendinning L, Wisedchanwet T, Watson M. The madness of microbiome: attempting to find consensus “best practice” for 16S microbiome studies. Appl Environ Microbiol 2018; 84:e02627-17 [CrossRef]
    [Google Scholar]
  175. Rassner SME, Anesio AM, Girdwood SE, Hell K, Gokul JK et al. Can the bacterial community of a high Arctic glacier surface escape viral control?. Front Microbiol 2016; 7:956 [CrossRef]
    [Google Scholar]
  176. Eren AM, Esen Özcan C., Quince C, Vineis JH, Morrison HG et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 2015; 3:e1319 [CrossRef]
    [Google Scholar]
  177. de Vargas C, Audic S, Henry N, Decelle J, Mahé F et al. Eukaryotic plankton diversity in the sunlit ocean. Science 2015; 348:1261605 [CrossRef]
    [Google Scholar]
  178. Metcalfe DB, Hermans TDG, Ahlstrand J, Becker M, Berggren M et al. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nat Ecol Evol 2018; 2:1443–1448 [CrossRef]
    [Google Scholar]
  179. Mallory ML, Gilchrist HG, Janssen M, Major HL, Merkel F et al. Financial costs of conducting science in the Arctic: examples from seabird research. Arct Sci 2018; 4:624–633 [CrossRef]
    [Google Scholar]
  180. Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. Isme J 2013; 7:2061–2068 [CrossRef]
    [Google Scholar]
  181. Davey HM. Life, death, and in-between: meanings and methods in microbiology. Appl Environ Microbiol 2011; 77:5571–5576 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  182. Rassner SME. Viruses in glacial environments. In: Psychrophiles: from Biodiversity to Biotechnology Cham: Springer; 2017 pp 111–131
    [Google Scholar]
  183. Selinger DW, Saxena RM, Cheung KJ, Church GM, Rosenow C. Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. Genome Res 2003; 13:216–223 [CrossRef]
    [Google Scholar]
  184. Segawa T, Ishii S, Ohte N, Akiyoshi A, Yamada A et al. The nitrogen cycle in cryoconites: naturally occurring nitrification-denitrification granules on a glacier. Environ Microbiol 2014; 16:3250–3262 [CrossRef]
    [Google Scholar]
  185. Cholet F, Ijaz UZ, Smith CJ. Differential ratio amplicons (Ramp) for the evaluation of RNA integrity extracted from complex environmental samples. Environ Microbiol 2019; 21:827–844 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  186. Moran MA, Satinsky B, Gifford SM, Luo H, Rivers A et al. Sizing up metatranscriptomics. Isme J 2013; 7:237–243 [CrossRef]
    [Google Scholar]
  187. Goordial J, Altshuler I, Hindson K, Chan-Yam K, Marcolefas E et al. In situ field sequencing and life detection in remote (79°26′N) Canadian high Arctic permafrost ice wedge microbial communities. Front Microbiol 2017; 8:02594 [CrossRef]
    [Google Scholar]
  188. Edwards A, Debbonaire AR, Nicholls SM, Rassner SM, Sattler B et al. In-field metagenome and 16S rRNA gene amplicon nanopore sequencing robustly characterize glacier microbiota. bioRxiv 2018; 073965:
    [Google Scholar]
  189. Gowers G-OF, Vince O, Charles J-H, Klarenberg I, Ellis T et al. Entirely off-grid and solar-powered DNA sequencing of microbial communities during an ice cap traverse expedition. Genes 2019; 10:902 [CrossRef]
    [Google Scholar]
  190. Cunsolo A, Ellis NR. Ecological grief as a mental health response to climate change-related loss. Nat Clim Chang 2018; 8:275281 [CrossRef]
    [Google Scholar]
  191. Gordon TAC, Radford AN, Simpson SD. Grieving environmental scientists need support. Science 2019; 366:193 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  192. Copland L, Mueller DR, Weir L. Rapid loss of the Ayles ice shelf, Ellesmere Island, Canada. Geophys Res Lett 2007; 34:L21501 [CrossRef]
    [Google Scholar]
  193. Mueller DR, Vincent WF, Jeffries MO. Environmental gradients, fragmented habitats, and microbiota of a northern ice shelf cryoecosystem, Ellesmere Island, Canada. Arct Antarct Alp Res 2006; 38:593–607 [CrossRef]
    [Google Scholar]
  194. Jungblut AD, Mueller D, Vincent WF. Arctic ice shelf ecosystems. In: Arctic Ice Shelves and Ice Islands Cham: Springer; 2017 pp 227–260
    [Google Scholar]
  195. Moore GWK. The December 2015 North Pole warming event and the increasing occurrence of such events. Sci Rep 2016; 6:39084 [CrossRef]
    [Google Scholar]
  196. Kim B-M, Hong J-Y, Jun S-Y, Zhang X, Kwon H et al. Major cause of unprecedented Arctic warming in January 2016: critical role of an Atlantic windstorm. Sci Rep 2017; 7:40051 [CrossRef]
    [Google Scholar]
  197. Greshake B, Zehr S, Dal Grande F, Meiser A, Schmitt I et al. Potential and pitfalls of eukaryotic metagenome skimming: a test case for lichens. Mol Ecol Resour 2016; 16:511–523 [CrossRef]
    [Google Scholar]
  198. Muir P, Li S, Lou S, Wang D, Spakowicz DJ et al. The real cost of sequencing: scaling computation to keep pace with data generation. Genome Biol 2016; 17:53 [CrossRef]
    [Google Scholar]
  199. Cary SC, Fierer N. The importance of sample archiving in microbial ecology. Nat Rev Microbiol 2014; 12:789790 [CrossRef]
    [Google Scholar]
  200. Fierer N, Cary C. Don't let microbial samples perish. Nature 2014; 512:253 [CrossRef]
    [Google Scholar]
  201. Berg T, Pfaffhuber KA, Cole AS, Engelsen O, Steffen A. Ten-year trends in atmospheric mercury concentrations, meteorological effects and climate variables at Zeppelin, Ny-Ålesund. Atmos Chem Phys 2013; 13:6575–6586 [CrossRef]
    [Google Scholar]
  202. Malard L, Ávila-Jiménez M, Convey P, Larose C, Hodson A. Microbial Activity Monitoring by the Integrated Arctic Earth Observing System (MamSIOS) Longyearbyen: Svalbard Integrated Arctic Earth Observing System (SIOS); 2019
    [Google Scholar]
  203. Mader HM, Pettitt ME, Wadham JL, Wolff EW, Parkes RJ. Subsurface ice as a microbial habitat. Geology 2006; 34:169–172 [CrossRef]
    [Google Scholar]
  204. Painter TH, Duval B, Thomas WH, Mendez M, Heintzelman S et al. Detection and quantification of snow algae with an airborne imaging spectrometer. Appl Environ Microbiol 2001; 67:5267–5272 [CrossRef]
    [Google Scholar]
  205. Takeuchi N, Dial R, Kohshima S, Segawa T, Uetake J. Spatial distribution and abundance of red snow algae on the Harding Icefield, Alaska derived from a satellite image. Geophys Res Lett 2006; 33:L21502 [CrossRef]
    [Google Scholar]
  206. Cook JM, Hodson AJ, Gardner AS, Flanner M, Tedstone AJ et al. Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo. Cryosphere 2017; 11:2611–2632 [CrossRef]
    [Google Scholar]
  207. Geller G, Dvoskin R, Thio CL, Duggal P, Lewis MH et al. Genomics and infectious disease: a call to identify the ethical, legal and social implications for public health and clinical practice. Genome Med 2014; 6:106 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000375
Loading
/content/journal/mgen/10.1099/mgen.0.000375
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error