Meningococcal core and accessory phasomes vary by clonal complex Open Access

Abstract

is a Gram-negative human commensal pathogen, with extensive phenotypic plasticity afforded by phase-variable (PV) gene expression. Phase variation is a stochastic switch in gene expression from an ON to an OFF state, mediated by localized hypermutation of simple sequence repeats (SSRs). Circulating clones vary in propensity to cause disease, with some clonal complexes (ccs) classified as hypervirulent and others as carriage-associated. We examined the PV gene repertoires, or phasome, of these lineages in order to determine whether phase variation contributes to disease propensity. We analysed 3328 genomes representative of nine circulating meningococcal ccs with Phasome, a tool that identifies PV genes by the presence of SSRs and homologous gene clusters. The presence, absence and functions of all identified PV gene clusters were confirmed by annotation or searches within the PubMLST database. While no significant differences were detected in the number of PV genes or the core, conserved phasome content between hypervirulent and carriage lineages, individual ccs exhibited major variations in PV gene numbers. Phylogenetic clusters produced by phasome or core genome analyses were similar, indicating co-evolution of PV genes with the core genome. While conservation of PV clusters is high, with 76 % present in all meningococcal isolates, maintenance of an SSR is variable, ranging from conserved in all isolates to present only in a single cc, indicating differing evolutionary trajectories for each lineage. Diverse functional groups of PV genes were present across the meningococcal lineages; however, the majority directly or indirectly influence bacterial surface antigens and could impact on future vaccine development. Finally, we observe that meningococci have open pan phasomes, indicating ongoing evolution of PV gene content and a significant potential for adaptive changes in this clinically relevant genus.

Funding
This study was supported by the:
  • Medical Research Council, http://dx.doi.org/10.13039/501100000265 (Award MR/M020193/1)
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000367
2020-04-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/5/mgen000367.html?itemId=/content/journal/mgen/10.1099/mgen.0.000367&mimeType=html&fmt=ahah

References

  1. Pizza M, Rappuoli R. Neisseria meningitidis: pathogenesis and immunity. Curr Opin Microbiol 2015; 23:68–72 [View Article][PubMed][PubMed]
    [Google Scholar]
  2. Bayliss CD. Determinants of phase variation rate and the fitness implications of differing rates for bacterial pathogens and commensals. FEMS Microbiol Rev 2009; 33:504–520 [View Article][PubMed][PubMed]
    [Google Scholar]
  3. Metruccio MME, Pigozzi E, Roncarati D, Berlanda Scorza F, Norais N et al. A novel phase variation mechanism in the Meningococcus driven by a ligand-responsive repressor and differential spacing of distal promoter elements. PLoS Pathog 5:e1000710 [View Article]
    [Google Scholar]
  4. De Bolle X, Bayliss CD, Field D, van de Ven T, Saunders NJ et al. The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases. Mol Microbiol 2000; 35:211–222 [View Article][PubMed][PubMed]
    [Google Scholar]
  5. Bayliss CD, Bidmos FA, Anjum A, Manchev VT, Richards RL et al. Phase variable genes of Campylobacter jejuni exhibit high mutation rates and specific mutational patterns but mutability is not the major determinant of population structure during host colonization. Nucleic Acids Res 2012; 40:5876–5889 [View Article][PubMed][PubMed]
    [Google Scholar]
  6. Bayliss CD, Hoe JC, Makepeace K, Martin P, Hood DW et al. Neisseria meningitidis escape from the bactericidal activity of a monoclonal antibody is mediated by phase variation of lgtG and enhanced by a mutator phenotype. Infect Immun 2008; 76:5038–5048 [View Article][PubMed][PubMed]
    [Google Scholar]
  7. Tauseef I, Ali YM, Bayliss CD. Phase variation of PorA, a major outer membrane protein, mediates escape of bactericidal antibodies by Neisseria meningitidis. Infect Immun 2013; 81:1374–1380 [View Article][PubMed][PubMed]
    [Google Scholar]
  8. Saunders NJ, Jeffries AC, Peden JF, Hood DW, Tettelin H et al. Repeat-associated phase variable genes in the complete genome sequence of Neisseria meningitidis strain MC58. Mol Microbiol 2000; 37:207–215 [View Article][PubMed][PubMed]
    [Google Scholar]
  9. Aidley J, Wanford JJ, Green LR, Sheppard SK, Bayliss CD. PhasomeIt: an ‘omics’ approach to cataloguing the potential breadth of phase variation in the genus Campylobacter. Microb Genomics 2018; 4:mgen.0.000228 [View Article]
    [Google Scholar]
  10. Wanford JJ, Green LR, Aidley J, Bayliss CD. Phasome analysis of pathogenic and commensal Neisseria species expands the known repertoire of phase variable genes, and highlights common adaptive strategies. PLoS One 2018; 13:e0196675 [View Article][PubMed][PubMed]
    [Google Scholar]
  11. Mandal S, Campbell H, Ribeiro S, Gray S, Carr T et al. Risk of invasive meningococcal disease in university students in England and optimal strategies for protection using MenACWY vaccine. Vaccine 2017; 35:5814–5818 [View Article][PubMed][PubMed]
    [Google Scholar]
  12. Trayner KMA, Cameron JC, Anderson N. Meningococcal ACWY (MenACWY) vaccine uptake, and barriers and motivations towards vaccination, in undergraduate students: a mixed-methods study. The Lancet 2017; 390:S89 [View Article]
    [Google Scholar]
  13. Ladhani SN, Campbell H, Parikh SR, Saliba V, Borrow R et al. The introduction of the meningococcal B (MenB) vaccine (Bexsero®) into the national infant immunisation programme – new challenges for public health. J Infect 2015; 71:611–614 [View Article][PubMed][PubMed]
    [Google Scholar]
  14. Kretz CB, Retchless AC, Sidikou F, Issaka B, Ousmane S et al. Whole-genome characterization of epidemic Neisseria meningitidis serogroup C and resurgence of serogroup W, Niger, 2015. Emerg Infect Dis 2015; 22:1762–1768
    [Google Scholar]
  15. Green LR, Lucidarme J, Dave N, Chan H, Clark S et al. Phase variation of NadA in invasive Neisseria isolates impacts on coverage estimates for 4C-MenB, a MenB vaccine. J Clin Microbiol 2018; 56:e00204-18 [View Article]
    [Google Scholar]
  16. Oldfield NJ, Cayrou C, AlJannat MAK, Al-Rubaiawi AAA, Green LR et al. Rise in group W meningococcal carriage in university students, United Kingdom. Emerg Infect Dis 2017; 23:1009–1011 [View Article][PubMed][PubMed]
    [Google Scholar]
  17. Harrison OB, Schoen C, Retchless AC, Wang X, Jolley KA et al. Neisseria genomics: current status and future perspectives. Pathog Dis 2017; 75:ftx060 [View Article][PubMed][PubMed]
    [Google Scholar]
  18. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 3:124 [View Article]
    [Google Scholar]
  19. Findlow H, Campbell H, Lucidarme J, Andrews N, Linley E et al. Serogroup C Neisseria meningitidis disease epidemiology, seroprevalence, vaccine effectiveness and waning immunity, England, 1998/99 to 2015/16. Euro Surveill 2019; 24:1700818 [View Article][PubMed][PubMed]
    [Google Scholar]
  20. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed][PubMed]
    [Google Scholar]
  21. Henderson IR, Owen P, Nataro JP. Molecular switches – the ON and OFF of bacterial phase variation. Mol Microbiol 1999; 33:919–932 [View Article][PubMed][PubMed]
    [Google Scholar]
  22. Bayliss CD, Palmer ME. Evolution of simple sequence repeat-mediated phase variation in bacterial genomes. Ann N Y Acad Sci 2012; 1267:39–44 [View Article][PubMed][PubMed]
    [Google Scholar]
  23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed][PubMed]
    [Google Scholar]
  24. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 2011; 7:539 [View Article][PubMed][PubMed]
    [Google Scholar]
  25. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P et al. Artemis: sequence visualization and annotation. Bioinformatics 2000; 16:944–945 [View Article][PubMed][PubMed]
    [Google Scholar]
  26. Weidlich L, Baethgen LF, Mayer LW, Moraes C, Klein CC et al. High prevalence of Neisseria meningitidis hypervirulent lineages and emergence of W135:P1.5,2:ST-11 clone in Southern Brazil. J Infect 2008; 57:324–331 [View Article][PubMed][PubMed]
    [Google Scholar]
  27. Read RC. Neisseria meningitidis; clones, carriage, and disease. Clin Microbiol Infect 2014; 20:391–395 [View Article][PubMed][PubMed]
    [Google Scholar]
  28. Tibayrenc M, Ayala FJ. How clonal are Neisseria species? The epidemic clonality model revisited. Proc Natl Acad Sci 2015; 112:8909–8913 [View Article][PubMed][PubMed]
    [Google Scholar]
  29. Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 2012; 13:36–46 [View Article]
    [Google Scholar]
  30. Tan A, Hill DMC, Harrison OB, Srikhanta YN, Jennings MP et al. Distribution of the type III DNA methyltransferases modA, modB and modD among Neisseria meningitidis genotypes: implications for gene regulation and virulence. Sci Rep 2016; 6:21015 [View Article]
    [Google Scholar]
  31. Power PM, Roddam LF, Rutter K, Fitzpatrick SZ, Srikhanta YN et al. Genetic characterization of pilin glycosylation and phase variation in Neisseria meningitidis. Mol Microbiol 2003; 49:833–847 [View Article][PubMed][PubMed]
    [Google Scholar]
  32. Zhu P, Klutch MJ, Bash MC, Tsang RSW, Ng L-K et al. Genetic diversity of three lgt loci for biosynthesis of lipooligosaccharide (LOS) in Neisseria species. Microbiology 2002; 148:1833–1844 [View Article][PubMed][PubMed]
    [Google Scholar]
  33. Tzeng Y-L, Datta A, Kolli VK, Carlson RW, Stephens DS. Endotoxin of Neisseria meningitidis composed only of intact lipid A: inactivation of the meningococcal 3-deoxy-D-manno-octulosonic acid transferase. J Bacteriol 2002; 184:2379–2388 [View Article][PubMed][PubMed]
    [Google Scholar]
  34. Francis F, Ramirez-Arcos S, Salimnia H, Victor C, Dillon JR. Organization and transcription of the division cell wall (dcw) cluster in Neisseria gonorrhoeae. Gene 2000; 251:141–151 [View Article][PubMed][PubMed]
    [Google Scholar]
  35. Tzeng Y-L, Datta A, Strole C, Kolli VSK, Birck MR et al. KpsF is the arabinose-5-phosphate isomerase required for 3-deoxy-D-manno-octulosonic acid biosynthesis and for both lipooligosaccharide assembly and capsular polysaccharide expression in Neisseria meningitidis. J Biol Chem 2002; 277:24103–24113 [View Article][PubMed][PubMed]
    [Google Scholar]
  36. Perkins-Balding D, Ratliff-Griffin M, Stojiljkovic I. Iron transport systems in Neisseria meningitidis. Microbiol Mol Biol Rev 2004; 68:154–171 [View Article][PubMed][PubMed]
    [Google Scholar]
  37. Harrison OB, Maiden MCJ, Rokbi B. Distribution of transferrin binding protein B gene (tbpB) variants among Neisseria species. BMC Microbiol 2008; 8:66 [View Article][PubMed][PubMed]
    [Google Scholar]
  38. Pettersson A, Prinz T, Umar A, van der Biezen J, Tommassen J. Molecular characterization of LbpB, the second lactoferrin-binding protein of Neisseria meningitidis. Mol Microbiol 1998; 27:599–610 [View Article][PubMed][PubMed]
    [Google Scholar]
  39. Ratliff M, Zhu W, Deshmukh R, Wilks A, Stojiljkovic I. Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. J Bacteriol 2001; 183:6394–6403 [View Article][PubMed][PubMed]
    [Google Scholar]
  40. Russell JE, Jolley KA, Feavers IM, Maiden MCJ, Suker J. PorA variable regions of Neisseria meningitidis. Emerg Infect Dis 2004; 10:674–678 [View Article][PubMed][PubMed]
    [Google Scholar]
  41. Comanducci M, Bambini S, Caugant DA, Mora M, Brunelli B et al. NadA diversity and carriage in Neisseria meningitidis. Infect Immun 2004; 72:4217–4223 [View Article][PubMed][PubMed]
    [Google Scholar]
  42. Turner DPJ, Marietou AG, Johnston L, Ho KKL, Rogers AJ et al. Characterization of MspA, an immunogenic autotransporter protein that mediates adhesion to epithelial and endothelial cells in Neisseria meningitidis. Infect Immun 2006; 74:2957–2964 [View Article][PubMed][PubMed]
    [Google Scholar]
  43. van Ulsen P, van Alphen L, Ten Hove J, Fransen F, van der Ley P et al. A neisserial autotransporter NalP modulating the processing of other autotransporters. Mol Microbiol 2003; 50:1017–1030 [View Article][PubMed][PubMed]
    [Google Scholar]
  44. Morand PC, Drab M, Rajalingam K, Nassif X, Meyer TF. Neisseria meningitidis differentially controls host cell motility through PilC1 and PilC2 components of type IV pili. PLoS One 2009; 4:e6834 [View Article][PubMed][PubMed]
    [Google Scholar]
  45. Aho EL, Dempsey JA, Hobbs MM, Klapper DG, Cannon JG. Characterization of the opa (class 5) gene family of Neisseria meningitidis. Mol Microbiol 1991; 5:1429–1437 [View Article][PubMed][PubMed]
    [Google Scholar]
  46. Mackinnon FG, Borrow R, Gorringe AR, Fox AJ, Jones DM et al. Demonstration of lipooligosaccharide immunotype and capsule as virulence factors for Neisseria meningitidis using an infant mouse intranasal infection model. Microb Pathog 1993; 15:359–366 [View Article][PubMed][PubMed]
    [Google Scholar]
  47. Echenique-Rivera H, Muzzi A, Del Tordello E, Seib KL, Francois P et al. Transcriptome analysis of Neisseria meningitidis in human whole blood and mutagenesis studies identify virulence factors involved in blood survival. PLoS Pathog 2011; 7:e1002027 [View Article][PubMed][PubMed]
    [Google Scholar]
  48. van Ravenhorst MB, Bijlsma MW, van Houten MA, Struben VMD, Anderson AS et al. Meningococcal carriage in Dutch adolescents and young adults; a cross-sectional and longitudinal cohort study. Clin Microbiol Infect 2017; 23:573.e1–573.e7 [View Article][PubMed][PubMed]
    [Google Scholar]
  49. Moxon R, Kussell E. The impact of bottlenecks on microbial survival, adaptation, and phenotypic switching in host–pathogen interactions. Evolution 2017; 71:2803–2816
    [Google Scholar]
  50. Feil EJ, Enright MC. Analyses of clonality and the evolution of bacterial pathogens. Curr Opin Microbiol 2004; 7:308–313 [View Article][PubMed][PubMed]
    [Google Scholar]
  51. Budroni S, Siena E, Dunning Hotopp JC, Seib KL, Serruto D et al. Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination. Proc Natl Acad Sci USA 2011; 108:4494–4499 [View Article][PubMed][PubMed]
    [Google Scholar]
  52. de Filippis I. Quest for a broad-range vaccine against Neisseria meningitidis serogroup B: implications of genetic variations of the surface-exposed proteins. J Med Microbiol 2009; 58:1127–1132 [View Article][PubMed][PubMed]
    [Google Scholar]
  53. Gulati S, Shaughnessy J, Ram S, Rice PA. Targeting lipooligosaccharide (LOS) for a gonococcal vaccine. Front Immunol 2019; 10:00321 [View Article]
    [Google Scholar]
  54. Christodoulides M, Heckels J. Novel approaches to Neisseria meningitidis vaccine design. Pathog Dis 2017; 75:ftx033 [View Article][PubMed][PubMed]
    [Google Scholar]
  55. Zollinger WD, Donets MA, Schmiel DH, Pinto VB, Labrie JE et al. Design and evaluation in mice of a broadly protective meningococcal group B native outer membrane vesicle vaccine. Vaccine 2010; 28:5057–5067 [View Article][PubMed][PubMed]
    [Google Scholar]
  56. Chakraborti S, Lewis LA, Cox AD, St Michael F, Li J et al. Phase-variable heptose I glycan extensions modulate efficacy of 2C7 vaccine antibody directed against Neisseria gonorrhoeae lipooligosaccharide. J Immunol 2016; 196:4576–4586 [View Article][PubMed][PubMed]
    [Google Scholar]
  57. John CM, Phillips NJ, Stein DC, Jarvis GA. Innate immune response to lipooligosaccharide: pivotal regulator of the pathobiology of invasive Neisseria meningitidis infections. Pathog Dis 2017; 75:ftx030 [View Article][PubMed][PubMed]
    [Google Scholar]
  58. Palmer ME, Lipsitch M, Moxon ER, Bayliss CD. Broad conditions favor the evolution of phase-variable loci. mBio 2013; 4:e00430-12 [View Article][PubMed][PubMed]
    [Google Scholar]
  59. Shafer WM, Datta A, Kolli VSK, Rahman MM, Balthazar JT et al. Phase variable changes in genes lgtA and lgtC within the lgtABCDE operon of Neisseria gonorrhoeae can modulate gonococcal susceptibility to normal human serum. J Endotoxin Res 2002; 8:47–58 [View Article][PubMed][PubMed]
    [Google Scholar]
  60. Børud B, Bårnes GK, Brynildsrud OB, Fritzsønn E, Caugant DA. Genotypic and phenotypic characterization of the O-linked protein glycosylation system reveals high glycan diversity in paired meningococcal carriage isolates. J Bacteriol 2018; 200:e00794-17 [View Article]
    [Google Scholar]
  61. Rytkönen A, Albiger B, Hansson-Palo P, Källström H, Olcén P et al. Neisseria meningitidis undergoes PilC phase variation and PilE sequence variation during invasive disease. J Infect Dis 2004; 189:402–409 [View Article][PubMed][PubMed]
    [Google Scholar]
  62. Oldfield NJ, Matar S, Bidmos FA, Alamro M, Neal KR et al. Prevalence and phase variable expression status of two autotransporters, NalP and MspA, in carriage and disease isolates of Neisseria meningitidis. PLoS One 8:e69746 [View Article]
    [Google Scholar]
  63. van der Ende A, Hopman CT, Dankert J. Multiple mechanisms of phase variation of PorA in Neisseria meningitidis. Infect Immun 2000; 68:6685–6690 [View Article][PubMed][PubMed]
    [Google Scholar]
  64. Richardson AR, Stojiljkovic I. HmbR, a hemoglobin-binding outer membrane protein of Neisseria meningitidis, undergoes phase variation. J Bacteriol 1999; 181:2067–2074 [View Article][PubMed][PubMed]
    [Google Scholar]
  65. Carson SD, Stone B, Beucher M, Fu J, Sparling PF. Phase variation of the gonococcal siderophore receptor FetA. Mol Microbiol 2000; 36:585–593 [View Article][PubMed][PubMed]
    [Google Scholar]
  66. Lewis LA, Gipson M, Hartman K, Ownbey T, Vaughn J et al. Phase variation of HpuAB and HmbR, two distinct haemoglobin receptors of Neisseria meningitidis DNM2. Mol Microbiol 1999; 32:977–989 [View Article][PubMed][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000367
Loading
/content/journal/mgen/10.1099/mgen.0.000367
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited Most Cited RSS feed