1887

Abstract

Knowledge of pneumococcal lineages, their geographic distribution and antibiotic resistance patterns, can give insights into global pneumococcal disease. We provide interactive bioinformatic outputs to explore such topics, aiming to increase dissemination of genomic insights to the wider community, without the need for specialist training. We prepared 12 country-specific phylogenetic snapshots, and international phylogenetic snapshots of 73 common Global Pneumococcal Sequence Clusters (GPSCs) previously defined using PopPUNK, and present them in Microreact. Gene presence and absence defined using Roary, and recombination profiles derived from Gubbins are presented in Phandango for each GPSC. Temporal phylogenetic signal was assessed for each GPSC using BactDating. We provide examples of how such resources can be used. In our example use of a country-specific phylogenetic snapshot we determined that serotype 14 was observed in nine unrelated genetic backgrounds in South Africa. The international phylogenetic snapshot of GPSC9, in which most serotype 14 isolates from South Africa were observed, highlights that there were three independent sub-clusters represented by South African serotype 14 isolates. We estimated from the GPSC9-dated tree that the sub-clusters were each established in South Africa during the 1980s. We show how recombination plots allowed the identification of a 20 kb recombination spanning the capsular polysaccharide locus within GPSC97. This was consistent with a switch from serotype 6A to 19A estimated to have occured in the 1990s from the GPSC97-dated tree. Plots of gene presence/absence of resistance genes (, , ) across the GPSC23 phylogeny were consistent with acquisition of a composite transposon. We estimated from the GPSC23-dated tree that the acquisition occurred between 1953 and 1975. Finally, we demonstrate the assignment of GPSC31 to 17 externally generated pneumococcal serotype 1 assemblies from Utah via Pathogenwatch. Most of the Utah isolates clustered within GPSC31 in a USA-specific clade with the most recent common ancestor estimated between 1958 and 1981. The resources we have provided can be used to explore to data, test hypothesis and generate new hypotheses. The accessible assignment of GPSCs allows others to contextualize their own collections beyond the data presented here.

Funding
This study was supported by the:
  • Robert F. Breiman , Bill and Melinda Gates Foundation , (Award OPP1034556)
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000357
2020-04-30
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/5/mgen000357.html?itemId=/content/journal/mgen/10.1099/mgen.0.000357&mimeType=html&fmt=ahah

References

  1. Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 2018; 34:292–293 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  2. Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom 2016; 2:e000093 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  3. Gladstone RA, Lo SW, Lees JA, Croucher NJ, van Tonder AJ et al. International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact. EBioMedicine 2019; 43:338–346 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  4. Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW et al. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res 2019; 29:304–316 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  5. Croucher NJ, Finkelstein JA, Pelton SI, Mitchell PK, Lee GM et al. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat Genet 2013; 45:656–663 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  6. Croucher NJ, Chewapreecha C, Hanage WP, Harris SR, McGee L et al. Evidence for soft selective sweeps in the evolution of pneumococcal multidrug resistance and vaccine escape. Genome Biol Evol 2014; 6:1589–1602 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  7. Chewapreecha C, Harris SR, Croucher NJ, Turner C, Marttinen P et al. Dense genomic sampling identifies highways of pneumococcal recombination. Nat Genet 2014; 46:305–309 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  8. Mostowy RJ, Croucher NJ, De Maio N, Chewapreecha C, Salter SJ et al. Pneumococcal capsule synthesis locus CPS as evolutionary hotspot with potential to generate novel serotypes by recombination. Mol Biol Evol 2017; 34:2537–2554 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  9. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  10. Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ et al. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol 2010; 11:R107 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  11. Corander J, Fraser C, Gutmann MU, Arnold B, Hanage WP et al. Frequency-Dependent selection in vaccine-associated pneumococcal population dynamics. Nat Ecol Evol 2017; 1:1950–1960 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  12. Azarian T, Martinez PPP, Arnold BJ, Grant LR, Corander J et al. Prediction of post-vaccine population structure of Streptococcus pneumoniae using accessory gene frequencies. bioRxiv 2018; 420315:
    [Google Scholar]
  13. Gladstone RA, Devine V, Jones J, Cleary D, Jefferies JM et al. Pre-vaccine serotype composition within a lineage signposts its serotype replacement - a carriage study over 7 years following pneumococcal conjugate vaccine use in the UK. Microb Genom 2017; 3:e000119 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  14. Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J et al. Rapid pneumococcal evolution in response to clinical interventions. Science 2011; 331:430–434 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  15. Golubchik T, Brueggemann AB, Street T, Spencer CCA, Spencer CCA et al. Pneumococcal genome sequencing tracks a vaccine escape variant formed through a multi-fragment recombination event. Nat Genet 2012; 44:352–355 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  16. Page AJ, De Silva N, Hunt M, Quail MA, Parkhill J et al. Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Microb Genom 2016; 2:e000083 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  17. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  18. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  19. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  20. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  21. Didelot X, Croucher NJ, Bentley SD, Harris SR, Wilson DJ. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res 2018; 46:e134 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  22. Plummer M, Best N, Cowles K, Vines K. CODA: convergence diagnosis and output analysis for MCMC. R News 2006; 6:7–11
    [Google Scholar]
  23. Drummond AJ, Rambaut A. Beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007; 7:214 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  24. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  25. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2016; 2:e000056 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  26. Sankoff D. Minimal mutation trees of sequences. SIAM J Appl Math 1975; 28:35–42 [CrossRef]
    [Google Scholar]
  27. Pupko T, Pe'er I, Shamir R, Graur D. A fast algorithm for joint reconstruction of ancestral amino acid sequences. Mol Biol Evol 2000; 17:890–896 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  28. Epping L, van Tonder AJ, Gladstone RA, Bentley SD et al.The Global Pneumococcal Sequencing Consortium SeroBA: rapid high-throughput serotyping of Streptococcus pneumoniae from whole genome sequence data. Microb Genom 4:
    [Google Scholar]
  29. Centre for Genomic Pathogen Surveillance https://cgps.gitbook.io/pathogenwatch/; September 2019
  30. Wyres KL, Lambertsen LM, Croucher NJ, McGee L, von Gottberg A et al. The multidrug-resistant PMEN1 pneumococcus is a paradigm for genetic success. Genome Biol 2012; 13:R103 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  31. Croucher NJ, Hanage WP, Harris SR, McGee L, van der Linden M et al. Variable recombination dynamics during the emergence, transmission and 'disarming' of a multidrug-resistant pneumococcal clone. BMC Biol 2014; 12:49 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  32. Azarian T, Mitchell PK, Georgieva M, Thompson CM, Ghouila A et al. Global emergence and population dynamics of divergent serotype 3 CC180 pneumococci. PLoS Pathog 2018; 14:e1007438 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  33. O'Rourke KH, Williamson JG. When did globalisation begin?. Eur Rev Econ Hist 2002; 6:23–50 [CrossRef]
    [Google Scholar]
  34. Van Der Bly MCE. ‘Proto-Globalization’, in: Encyclopaedia of Global Studies, Sage. https://www.academia.edu/14444466/_Proto-Globalization_in_Encyclopaedia_of_Global_Studies_Sage_2012; 2012
  35. Ndlangisa KM, du Plessis M, Wolter N, de Gouveia L, Klugman KP et al. Population snapshot of Streptococcus pneumoniae causing invasive disease in South Africa prior to introduction of pneumococcal conjugate vaccines. PLoS One 2014; 9:e107666 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  36. Brueggemann AB, Spratt BG. Geographic distribution and clonal diversity of Streptococcus pneumoniae serotype 1 isolates. J Clin Microbiol 2003; 41:4966–4970 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  37. Blumental S, Granger-Farbos A, Moïsi JC, Soullié B, Leroy P et al. Virulence factors of Streptococcus pneumoniae. Comparison between African and French invasive isolates and implication for future vaccines. PLoS One 2015; 10:e0133885 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  38. Byington CL, Hulten KG, Ampofo K, Sheng X, Pavia AT et al. Molecular epidemiology of pediatric pneumococcal empyema from 2001 to 2007 in Utah. J Clin Microbiol 2010; 48:520–525 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  39. Duarte C, Sanabria O, Moreno J. Molecular characterization of Streptococcus pneumoniae serotype 1 invasive isolates in Colombia. Rev Panam Salud Publica 2013; 33:422–426[PubMed][PubMed]
    [Google Scholar]
  40. Traore Y, Tameklo TA, Njanpop-Lafourcade B-M, Lourd M, Yaro S et al. Incidence, seasonality, age distribution, and mortality of pneumococcal meningitis in Burkina Faso and Togo. Clin Infect Dis 2009; 48 Suppl 2:S181–S189 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  41. Byington CL, Spencer LY, Johnson TA, Pavia AT, Allen D et al. An epidemiological investigation of a sustained high rate of pediatric parapneumonic empyema: risk factors and microbiological associations. Clin Infect Dis 2002; 34:434–440 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  42. Lees JA, Kendall M, Parkhill J, Colijn C, Bentley SD et al. Evaluation of phylogenetic reconstruction methods using bacterial whole genomes: a simulation based study. Wellcome Open Res 2018; 3:33 [CrossRef][PubMed][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000357
Loading
/content/journal/mgen/10.1099/mgen.0.000357
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error