1887

Abstract

B1/NAP1/RT027/ST01 has been responsible for outbreaks of antibiotic-associated diarrhoea in clinical settings worldwide and is associated with severe disease presentations and increased mortality rates. Two fluoroquinolone-resistant (FQR) lineages of the epidemic B1/NAP1/RT027/ST01 strain emerged in the USA in the early 1990s and disseminated trans continentally (FQR1 and FQR2). However, it is unclear when and from where they entered Latin America (LA) and whether isolates from LA exhibit unique genomic features when compared to B1/NAP1/RT027/ST01 isolates from other regions of the world. To answer the first issue we compared whole-genome sequences (WGS) of 25 clinical isolates typed as NAP1, RT027 or ST01 in Costa Rica (=16), Chile (=5), Honduras (=3) and Mexico (=1) to WGS of 129 global isolates from the same genotype using Bayesian phylogenomics. The second question was addressed through a detailed analysis of the number and type of mutations of the LA isolates and their mobile resistome. All but two B1/NAP1/RT027/ST01 isolates from LA belong to the FQR2 lineage (=23, 92 %), confirming its widespread distribution. As indicated by analysis of a dataset composed of 154 WGS, the B1/NAP1/RT027/ST01 strain was introduced into the four LA countries analysed between 1998 and 2005 from North America (twice) and Europe (at least four times). These events occurred soon after the emergence of the FQR lineages and more than one decade before the first report of the detection of the B1/NAP1/RT027/ST01 in LA. A total of 552 SNPs were identified across all genomes examined (3.8–4.3 Mb) in pairwise comparisons to the R20291 reference genome. Moreover, pairwise SNP distances were among the smallest distances determined in this species so far (0 to 55). Despite this high level of genomic conservation, 39 unique SNPs (7 %) in genes that play roles in the infection process (i.e. ) or antibiotic resistance (i.e. , ) distinguished the LA isolates. In addition, isolates from Chile, Honduras and Mexico had twice as many antibiotic resistance genes (ARGs, =4) than related isolates from other regions. Their unique set of ARGs includes a -like gene and , which were found as part of putative mobile genetic elements whose sequences resemble undescribed integrative and conjugative elements. These results show multiple, independent introductions of B1/NAP1/RT027/ST01 isolates from the FQR1 and FQR2 lineages from different geographical sources into LA and a rather rapid accumulation of distinct mutations and acquired ARG by the LA isolates.

Funding
This study was supported by the:
  • Comisión Nacional de Investigación Científica y Tecnológica, http://dx.doi.org/10.13039/501100002848 (Award 21181536)
  • Ministerio de Economía, Fomento y Turismo (CL) (Award Nucleus in the Biology of Intestinal Microbiota)
    • Principle Award Recipient: Daniel Paredes-Sabja
  • EU-Lac Health (Award T020076)
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000355
2020-03-16
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/5/mgen000355.html?itemId=/content/journal/mgen/10.1099/mgen.0.000355&mimeType=html&fmt=ahah

References

  1. Viscidi R, Willey S, Bartlett JG. Isolation rates and toxigenic potential of Clostridium difficile isolates from various patient populations. Gastroenterology 1981; 81:5–9 [View Article][PubMed]
    [Google Scholar]
  2. Terveer EM, Crobach MJT, Sanders IMJG, Vos MC, Verduin CM et al. Detection of Clostridium difficile in feces of asymptomatic patients admitted to the hospital. J Clin Microbiol 2017; 55:403–411 [View Article][PubMed]
    [Google Scholar]
  3. Bartlett JG. Clostridium difficile: progress and challenges. Ann N Y Acad Sci 2010; 1213:62–69 [View Article][PubMed]
    [Google Scholar]
  4. Burke KE, Lamont JT. Clostridium difficile infection: a worldwide disease. Gut Liver 2014; 8:1–6 [View Article][PubMed]
    [Google Scholar]
  5. See I, Mu Y, Cohen J, Beldavs ZG, Winston LG et al. NAP1 strain type predicts outcomes from Clostridium difficile infection. Clin Infect Dis 2014; 58:1394–1400 [View Article][PubMed]
    [Google Scholar]
  6. Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK et al. Burden of Clostridium difficile infection in the United States. N Engl J Med 2015; 372:825–834 [View Article][PubMed]
    [Google Scholar]
  7. Loo VG, Poirier L, Miller MA, Oughton M, Libman MD et al. A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med 2005; 353:2442–2449 [View Article][PubMed]
    [Google Scholar]
  8. Warny M, Pepin J, Fang A, Killgore G, Thompson A et al. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 2005; 366:1079–1084 [View Article][PubMed]
    [Google Scholar]
  9. Griffiths D, Fawley W, Kachrimanidou M, Bowden R, Crook DW et al. Multilocus sequence typing of Clostridium difficile. J Clin Microbiol 2010; 48:770–778 [View Article][PubMed]
    [Google Scholar]
  10. He M, Miyajima F, Roberts P, Ellison L, Pickard DJ et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet 2013; 45:109–113 [View Article][PubMed]
    [Google Scholar]
  11. Dridi L, Tankovic J, Burghoffer B, Barbut F, Petit J-C. gyrA and gyrB mutations are implicated in cross-resistance to ciprofloxacin and moxifloxacin in Clostridium difficile. Antimicrob Agents Chemother 2002; 46:3418–3421 [View Article][PubMed]
    [Google Scholar]
  12. Quesada-Gómez C, Rodríguez C, Gamboa-Coronado MdelM, Rodríguez-Cavallini E, Du T et al. Emergence of Clostridium difficile NAP1 in Latin America. J Clin Microbiol 2010; 48:669–670 [View Article][PubMed]
    [Google Scholar]
  13. López-Ureña D, Quesada-Gómez C, Miranda E, Fonseca M, Rodríguez-Cavallini E. Spread of epidemic Clostridium difficile NAP1/027 in Latin America: case reports in Panama. J Med Microbiol 2014; 63:322–324 [View Article][PubMed]
    [Google Scholar]
  14. Plaza-Garrido Á, Barra-Carrasco J, Macias JH, Carman R, Fawley WN et al. Predominance of Clostridium difficile ribotypes 012, 027 and 046 in a university hospital in Chile, 2012. Epidemiol Infect 2016; 144:976–979 [View Article][PubMed]
    [Google Scholar]
  15. Martínez-Meléndez A, Tijerina-Rodríguez L, Morfin-Otero R, Camacho-Ortíz A, Villarreal-Treviño L et al. Circulation of highly drug-resistant Clostridium difficile ribotypes 027 and 001 in two tertiary-care hospitals in mexico. Microb Drug Resist 2018; 24:386–392 [View Article][PubMed]
    [Google Scholar]
  16. Salazar CL, Reyes C, Atehortua S, Sierra P, Correa MM et al. Molecular, microbiological and clinical characterization of Clostridium difficile isolates from tertiary care hospitals in Colombia. PLoS One 2017; 12:e0184689 [View Article][PubMed]
    [Google Scholar]
  17. Hidalgo-Villeda F, Tzoc E, Torres L, Bu E, Rodríguez C et al. Diversity of multidrug-resistant epidemic Clostridium difficile NAP1/RT027/ST01 strains in tertiary hospitals from Honduras. Anaerobe 2018; 52:75–78 [View Article][PubMed]
    [Google Scholar]
  18. Versporten A, Zarb P, Caniaux I, Gros M-F, Drapier N et al. Antimicrobial consumption and resistance in adult hospital inpatients in 53 countries: results of an internet-based global point prevalence survey. Lancet Glob Health 2018; 6:e619–e629 [View Article][PubMed]
    [Google Scholar]
  19. Wirtz VJ, Dreser A, Gonzales R. Trends in antibiotic utilization in eight Latin American countries, 1997-2007. Rev Panam Salud Publica 2010; 27:219–225 [View Article][PubMed]
    [Google Scholar]
  20. Owens RC, Donskey CJ, Gaynes RP, Loo VG, Muto CA. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin Infect Dis 2008; 46 Suppl 1:S19–S31 [View Article][PubMed]
    [Google Scholar]
  21. Mirzaei EZ, Rajabnia M, Sadeghi F, Ferdosi-Shahandashti E, Sadeghi-Haddad-Zavareh M et al. Diagnosis of Clostridium difficile infection by toxigenic culture and PCR assay. Iran J Microbiol 2018; 10:287–293[PubMed]
    [Google Scholar]
  22. Crobach MJT, Baktash A, Duszenko N, Kuijper EJ. Diagnostic guidance for C. difficile infections. Adv Exp Med Biol 2018; 1050:27–44 [View Article][PubMed]
    [Google Scholar]
  23. Lemee L, Dhalluin A, Testelin S, Mattrat M-A, Maillard K et al. Multiplex PCR targeting tpi (triose phosphate isomerase), tcdA (toxin A), and tcdB (toxin B) genes for toxigenic culture of Clostridium difficile. J Clin Microbiol 2004; 42:5710–5714 [View Article][PubMed]
    [Google Scholar]
  24. Killgore G, Thompson A, Johnson S, Brazier J, Kuijper E et al. Comparison of seven techniques for typing international epidemic strains of Clostridium difficile: restriction endonuclease analysis, pulsed-field gel electrophoresis, PCR-ribotyping, multilocus sequence typing, multilocus variable-number tandem-repeat analysis, amplified fragment length polymorphism, and surface layer protein A gene sequence typing. J Clin Microbiol 2008; 46:431–437 [View Article][PubMed]
    [Google Scholar]
  25. Bidet P, Barbut F, Lalande V, Burghoffer B, Petit JC. Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol Lett 1999; 175:261–266 [View Article][PubMed]
    [Google Scholar]
  26. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  27. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
  28. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article][PubMed]
    [Google Scholar]
  29. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  30. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014; 15:R46 [View Article][PubMed]
    [Google Scholar]
  31. Inouye M, Dashnow H, Raven L-A, Schultz MB, Pope BJ et al. SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 2014; 6:90 [View Article][PubMed]
    [Google Scholar]
  32. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article][PubMed]
    [Google Scholar]
  33. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article][PubMed]
    [Google Scholar]
  34. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article][PubMed]
    [Google Scholar]
  35. Davis S, Pettengill JB, Luo Y, Payne J, Shpuntoff A et al. CFSAN SNP pipeline: an automated method for constructing SNP matrices from next-generation sequence data. PeerJ Comput Sci 2015; 1:e20 [View Article]
    [Google Scholar]
  36. Boinett CJ, Cain AK. Recombination: genomic mix 'n' match. Nat Rev Microbiol 2014; 12:795 [View Article][PubMed]
    [Google Scholar]
  37. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012; 6:80–92 [View Article][PubMed]
    [Google Scholar]
  38. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009; 25:1189–1191 [View Article][PubMed]
    [Google Scholar]
  39. Drozdetskiy A, Cole C, Procter J, Barton GJ. JPred4: a protein secondary structure prediction server. Nucleic Acids Res 2015; 43:W389–W394 [View Article][PubMed]
    [Google Scholar]
  40. Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol 2008; 25:1253–1256 [View Article][PubMed]
    [Google Scholar]
  41. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst Biol 2018; 67:901–904 [View Article][PubMed]
    [Google Scholar]
  42. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ et al. Bayesian phylogenetic and phylodynamic data integration using beast 1.10. Virus Evol 2018; 4:vey016 [View Article][PubMed]
    [Google Scholar]
  43. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom 2017; 3:e000131 [View Article][PubMed]
    [Google Scholar]
  44. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 2013; 57:3348–3357 [View Article][PubMed]
    [Google Scholar]
  45. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  46. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N et al. InterProScan: protein domains identifier. Nucleic Acids Res 2005; 33:W116–W120 [View Article][PubMed]
    [Google Scholar]
  47. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics 2011; 27:1009–1010 [View Article][PubMed]
    [Google Scholar]
  48. Liu M, Li X, Xie Y, Bi D, Sun J et al. Iceberg 2.0: an updated database of bacterial integrative and conjugative elements. Nucleic Acids Res 2019; 47:D660–D665 [View Article][PubMed]
    [Google Scholar]
  49. Eyre DW, Davies KA, Davis G, Fawley WN, Dingle KE et al. Two distinct patterns of Clostridium difficile diversity across Europe indicating contrasting routes of spread. Clin Infect Dis 2018; 67:1035–1044 [View Article][PubMed]
    [Google Scholar]
  50. O'Connor JR, Galang MA, Sambol SP, Hecht DW, Vedantam G et al. Rifampin and rifaximin resistance in clinical isolates of Clostridium difficile. Antimicrob Agents Chemother 2008; 52:2813–2817 [View Article][PubMed]
    [Google Scholar]
  51. Norén T, Akerlund T, Wullt M, Burman LG, Unemo M. Mutations in fusA associated with posttherapy fusidic acid resistance in Clostridium difficile. Antimicrob Agents Chemother 2007; 51:1840–1843 [View Article][PubMed]
    [Google Scholar]
  52. Schwarz S, Wang Y. Nomenclature and functionality of the so-called cfr gene from Clostridium difficile. Antimicrob Agents Chemother 2015; 59:2476–2477 [View Article][PubMed]
    [Google Scholar]
  53. Spigaglia P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther Adv Infect Dis 2016; 3:23–42 [View Article][PubMed]
    [Google Scholar]
  54. Mullany P, Allan E, Roberts AP. Mobile genetic elements in Clostridium difficile and their role in genome function. Res Microbiol 2015; 166:361–367 [View Article][PubMed]
    [Google Scholar]
  55. Steglich M, Nitsche A, von Müller L, Herrmann M, Kohl TA et al. Tracing the spread of Clostridium difficile ribotype 027 in Germany based on bacterial genome sequences. PLoS One 2015; 10:e0139811 [View Article][PubMed]
    [Google Scholar]
  56. Endres BT, Begum K, Sun H, Walk ST, Memariani A et al. Epidemic Clostridioides difficile ribotype 027 lineages: comparisons of Texas versus worldwide strains. Open Forum Infect Dis 2019; 6:ofz013 [View Article][PubMed]
    [Google Scholar]
  57. Murillo T, Ramírez-Vargas G, Riedel T, Overmann J, Andersen JM et al. Two groups of cocirculating, epidemic Clostridiodes difficile strains microdiversify through different mechanisms. Genome Biol Evol 2018; 10:982–998 [View Article][PubMed]
    [Google Scholar]
  58. Brooks DR, Bilewitch J, Condy C, Evans DC, Folinsbee KE et al. Quantitative phylogenetic analysis in the 21st century. Revista Mexicana de Biodiversidad 2007; 78:225–252
    [Google Scholar]
  59. Mir D, Delatorre E, Bonaldo M, Lourenço-de-Oliveira R, Vicente AC et al. Phylodynamics of yellow fever virus in the Americas: new insights into the origin of the 2017 Brazilian outbreak. Sci Rep 2017; 7:7385 [View Article][PubMed]
    [Google Scholar]
  60. Dingle KE, Didelot X, Ansari MA, Eyre DW, Vaughan A et al. Recombinational switching of the Clostridium difficile S-layer and a novel glycosylation gene cluster revealed by large-scale whole-genome sequencing. J Infect Dis 2013; 207:675–686 [View Article][PubMed]
    [Google Scholar]
  61. Merrigan MM, Venugopal A, Roxas JL, Anwar F, Mallozzi MJ et al. Surface-layer protein A (SlpA) is a major contributor to host-cell adherence of Clostridium difficile. PLoS One 2013; 8:e78404 [View Article][PubMed]
    [Google Scholar]
  62. Mori N, Takahashi T. Characteristics and immunological roles of surface layer proteins in Clostridium difficile. Ann Lab Med 2018; 38:189–195 [View Article][PubMed]
    [Google Scholar]
  63. Ackermann G, Tang YJ, Kueper R, Heisig P, Rodloff AC et al. Resistance to moxifloxacin in toxigenic Clostridium difficile isolates is associated with mutations in gyrA. Antimicrob Agents Chemother 2001; 45:2348–2353 [View Article][PubMed]
    [Google Scholar]
  64. Spigaglia P, Barbanti F, Mastrantonio P. European Study Group on Clostridium difficile. Multidrug resistance in European Clostridium difficile clinical isolates. J Antimicrob Chemother 2011; 66:2227–2234
    [Google Scholar]
  65. Ramírez-Vargas G, Quesada-Gómez C, Acuña-Amador L, López-Ureña D, Murillo T et al. A Clostridium difficile lineage endemic to Costa Rican hospitals is multidrug resistant by acquisition of chromosomal mutations and novel mobile genetic elements. Antimicrob Agents Chemother 2017; 61: 24 03 2017 [View Article][PubMed]
    [Google Scholar]
  66. Stojković V, Ulate MF, Hidalgo-Villeda F, Aguilar E, Monge-Cascante C et al. cfr(B), cfr(C), and a new cfr-like Gene, cfr(E), in Clostridium difficile strains recovered across Latin America. Antimicrob Agents Chemother 2019; 64: 20 12 2019 [View Article][PubMed]
    [Google Scholar]
  67. Amrane S, Hocquart M, Afouda P, Kuete E, Pham T-P-T et al. Metagenomic and culturomic analysis of gut microbiota dysbiosis during Clostridium difficile infection. Sci Rep 2019; 9:12807 [View Article][PubMed]
    [Google Scholar]
  68. Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC. New insights from uncultivated genomes of the global human gut microbiome. Nature 2019; 568:505–510 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000355
Loading
/content/journal/mgen/10.1099/mgen.0.000355
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error