1887

Abstract

has emerged as an important nosocomial pathogen, with whole-genome sequencing (WGS) significantly improving our ability to characterize associated outbreaks. Our study sought to perform a genome-wide analysis of multiclonal isolates (=39; 23 patients) producing extended spectrum beta-lactamases and/or carbapenemases sourced between 2011 and 2016 in a Portuguese tertiary-care hospital. All isolates showed resistance to third-generation cephalosporins and six isolates (five patients) were also carbapenem resistant. Genome-wide-based phylogenetic analysis revealed a topology representing ongoing dissemination of three main sequence-type (ST) clades (ST15, ST147 and ST307) and transmission across different wards, compatible with missing links that can take the form of undetected colonized patients. Two carbapenemase-coding genes were detected: , located on a transposon, and on a novel class 3 integron. Additionally, four genes coding for ESBLs (, , and ) were also detected. ESBL horizontal dissemination across five clades is highlighted by the similar genetic environments of gene upstream of IS on a -like transposon. Overall, this study provides a high-resolution genome-wide perspective on the epidemiology of ESBL and carbapenemase-producing in a healthcare setting while contributing for the adoption of appropriate intervention and prevention strategies.

Keyword(s): KPC , Gram-negative , ESBL , Lisbon , CTX-M and Portugal
Funding
This study was supported by the:
  • João Perdigão , Fundação para a Ciência e a Tecnologia , (Award CEECIND/00394/2017)
  • Taane G. Clark , Medical Research Council , (Award MR/K000551/1, MR/M01360X/1, MR/N010469/1, MR/R020973/1, MR/R025576/1, MR/S01988X/1, MR/S03563X/1)
  • Taane G. Clark , Biotechnology and Biological Sciences Research Council , (Award BB/R013063/1)
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000349
2020-04-01
2020-06-02
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10.1099/mgen.0.000349/mgen000349.html?itemId=/content/journal/mgen/10.1099/mgen.0.000349&mimeType=html&fmt=ahah

References

  1. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A 2015; 112:E3574–E3581 [CrossRef][PubMed]
    [Google Scholar]
  2. Sánchez-Romero I, Asensio A, Oteo J, Muñoz-Algarra M, Isidoro B et al. Nosocomial outbreak of VIM-1-producing Klebsiella pneumoniae isolates of multilocus sequence type 15: molecular basis, clinical risk factors, and outcome. Antimicrob Agents Chemother 2012; 56:420–427 [CrossRef][PubMed]
    [Google Scholar]
  3. Zhou J, Li G, Ma X, Yang Q, Yi J. Outbreak of colonization by carbapenemase-producing Klebsiella pneumoniae in a neonatal intensive care unit: investigation, control measures and assessment. Am J Infect Control 2015; 43:1122–1124 [CrossRef][PubMed]
    [Google Scholar]
  4. World Health Organization Antimicrobial Resistance: Global Report on Surveillance Geneva: World Health Organization; 2014
    [Google Scholar]
  5. Barroso H, Freitas-Vieira A, Lito LM, Cristino JM, Salgado MJ et al. Survey of Klebsiella pneumoniae producing extended-spectrum beta-lactamases at a Portuguese hospital: TEM-10 as the endemic enzyme. J Antimicrob Chemother 2000; 45:611–616 [CrossRef][PubMed]
    [Google Scholar]
  6. Conceição T, Brízio A, Duarte A, Lito LM, Cristino JM et al. First description of CTX-M-15-producing Klebsiella pneumoniae in Portugal. Antimicrob Agents Chemother 2005; 49:477–478 [CrossRef][PubMed]
    [Google Scholar]
  7. Machado P, Silva A, Lito L, Melo-Cristino J, Duarte A. Emergence of Klebsiella pneumoniae ST11-producing KPC-3 carbapenemase at a Lisbon Hospital. Clin Microbiol Infect 2010; 16:28
    [Google Scholar]
  8. Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH et al. Antibiotics, resistome and resistance mechanisms: a bacterial perspective. Front Microbiol 2018; 9:9 [CrossRef][PubMed]
    [Google Scholar]
  9. Novais A, Cantón R, Moreira R, Peixe L, Baquero F et al. Emergence and dissemination of Enterobacteriaceae isolates producing CTX-M-1-like enzymes in Spain are associated with IncFII (CTX-M-15) and broad-host-range (CTX-M-1, -3, and -32) plasmids. Antimicrob Agents Chemother 2007; 51:796–799 [CrossRef][PubMed]
    [Google Scholar]
  10. Rodrigues C, Bavlovič J, Machado E, Amorim J, Peixe L et al. Kpc-3-Producing Klebsiella pneumoniae in Portugal linked to previously circulating Non-CG258 lineages and uncommon genetic platforms (Tn4401d-IncFIA and Tn4401d-IncN). Front Microbiol 2016; 7:1000 [CrossRef][PubMed]
    [Google Scholar]
  11. Brizio A, Vasco S, Gonçalves AR, Lito LM, Cristino JM et al. Survey of extended-spectrum beta-lactamases in Escherichia coli isolates from a Portuguese hospital and characterisation of a novel class 1 integron (In60A) carrying the blaCTX-M-9 gene. Int J Antimicrob Agents 2006; 28:320–324 [CrossRef][PubMed]
    [Google Scholar]
  12. Correia M, Boavida F, Grosso F, Salgado MJ, Lito LM et al. Molecular characterization of a new class 3 integron in Klebsiella pneumoniae. Antimicrob Agents Chemother 2003; 47:2838–2843 [CrossRef][PubMed]
    [Google Scholar]
  13. Gilchrist CA, Turner SD, Riley MF, Petri WA, Hewlett EL. Whole-Genome sequencing in outbreak analysis. Clin Microbiol Rev 2015; 28:541–563 [CrossRef][PubMed]
    [Google Scholar]
  14. Grad YH, Lipsitch M, Feldgarden M, Arachchi HM, Cerqueira GC et al. Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011. Proc Natl Acad Sci U S A 2012; 109:3065–3070 [CrossRef][PubMed]
    [Google Scholar]
  15. Becker L, Fuchs S, Pfeifer Y, Semmler T, Eckmanns T et al. Whole genome sequence analysis of CTX-M-15 producing Klebsiella isolates allowed dissecting a polyclonal outbreak scenario. Front Microbiol 2018; 9:322 [CrossRef][PubMed]
    [Google Scholar]
  16. Cronin KM, Poy Lorenzo YS, Olenski ME, Bloch AE, Visvanathan K et al. Risk factors for KPC-producing Enterobacteriaceae acquisition and infection in a healthcare setting with possible local transmission: a case-control study. J Hosp Infect 2017; 96:111–115 [CrossRef][PubMed]
    [Google Scholar]
  17. Kwong JC, Lane CR, Romanes F, Gonçalves da Silva A, Easton M et al. Translating genomics into practice for real-time surveillance and response to carbapenemase-producing Enterobacteriaceae: evidence from a complex multi-institutional KPC outbreak. PeerJ 2018; 6:e4210 [CrossRef][PubMed]
    [Google Scholar]
  18. The European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters - Version 4.0: European Society of Clinical Microbiology and Infectious Diseases; 2014
  19. Tsakris A, Kristo I, Poulou A, Themeli-Digalaki K, Ikonomidis A et al. Evaluation of boronic acid disk tests for differentiating KPC-possessing Klebsiella pneumoniae isolates in the clinical laboratory. J Clin Microbiol 2009; 47:362–367 [CrossRef][PubMed]
    [Google Scholar]
  20. Naas T, Cuzon G, Villegas M-V, Lartigue M-F, Quinn JP et al. Genetic structures at the origin of acquisition of the beta-lactamase bla KPC gene. Antimicrob Agents Chemother 2008; 52:1257–1263 [CrossRef][PubMed]
    [Google Scholar]
  21. Warburg G, Korem M, Robicsek A, Engelstein D, Moses AE et al. Changes in aac(6')-Ib-cr prevalence and fluoroquinolone resistance in nosocomial isolates of Escherichia coli collected from 1991 through 2005. Antimicrob Agents Chemother 2009; 53:1268–1270 [CrossRef][PubMed]
    [Google Scholar]
  22. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  23. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [CrossRef][PubMed]
    [Google Scholar]
  24. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  25. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [CrossRef][PubMed]
    [Google Scholar]
  26. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20:1297–1303 [CrossRef][PubMed]
    [Google Scholar]
  27. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [CrossRef][PubMed]
    [Google Scholar]
  28. Coll F, Phelan J, Hill-Cawthorne GA, Nair MB, Mallard K et al. Genome-Wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat Genet 2018; 50:307–316 [CrossRef][PubMed]
    [Google Scholar]
  29. Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 2006; 55:539–552 [CrossRef][PubMed]
    [Google Scholar]
  30. Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics 2011; 27:592–593 [CrossRef][PubMed]
    [Google Scholar]
  31. Letunic I, Bork P. Interactive tree of life (iTOL) V4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [CrossRef][PubMed]
    [Google Scholar]
  32. Nascimento M, Sousa A, Ramirez M, Francisco AP, Carriço JA et al. PHYLOViZ 2.0: providing scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics 2017; 33:128–129 [CrossRef][PubMed]
    [Google Scholar]
  33. Villa L, Feudi C, Fortini D, Brisse S, Passet V et al. Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone. Microb Genom 2017; 3:e000110 [CrossRef][PubMed]
    [Google Scholar]
  34. Avgoulea K, Pilato DV, Zarkotou O, Sennati S, Politi L et al. Characterization of extensively drug-resistant or Pandrug-Resistant sequence type 147 and 101 OXA-48-producing Klebsiella pneumoniae causing bloodstream infections in patients in an intensive care unit. Antimicrob Agents Chemother 2018; 62:e02457-17 [CrossRef][PubMed]
    [Google Scholar]
  35. Tada T, Tsuchiya M, Shimada K, Nga TTT, Thu LTA et al. Dissemination of carbapenem-resistant Klebsiella pneumoniae clinical isolates with various combinations of carbapenemases (KPC-2, NDM-1, NDM-4, and OXA-48) and 16S rRNA methylases (RmtB and rMTC) in Vietnam. BMC Infect Dis 2017; 17:467 [CrossRef][PubMed]
    [Google Scholar]
  36. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [CrossRef][PubMed]
    [Google Scholar]
  37. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2017
    [Google Scholar]
  38. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics 2011; 27:1009–1010 [CrossRef][PubMed]
    [Google Scholar]
  39. Narciso A, Gonçalves L, Costa A, Godinho A, Fernandes F et al. Ventilator Touchscreen as Source of Esbl-Producing Klebsiella Pneumoniae Outbreak. International Conference on Prevention and Infection Control Geneva: Switzerland: BMC Proceedings; 2011
    [Google Scholar]
  40. Poirel L, Naas T, Nordmann P. Genetic support of extended-spectrum beta-lactamases. Clin Microbiol Infect 2008; 14 Suppl 1:75–81 [CrossRef][PubMed]
    [Google Scholar]
  41. Smet A, Van Nieuwerburgh F, Vandekerckhove TTM, Martel A, Deforce D et al. Complete nucleotide sequence of CTX-M-15-plasmids from clinical Escherichia coli isolates: insertional events of transposons and insertion sequences. PLoS One 2010; 5:e11202 [CrossRef][PubMed]
    [Google Scholar]
  42. Mindlin SZ, Bass IA, Bogdanova ES, Gorlenko ZM, Kaliaeva ES et al. [Horizontal transfer of mercury resistance genes in natural bacterial populations]. Mol Biol 2002; 36:160–170 [CrossRef][PubMed]
    [Google Scholar]
  43. Cheruvanky A, Stoesser N, Sheppard AE, Crook DW, Hoffman PS et al. Enhanced Klebsiella pneumoniae Carbapenemase Expression from a Novel Tn4401 Deletion. Antimicrob Agents Chemother 2017; 61: [CrossRef][PubMed]
    [Google Scholar]
  44. Papagiannitsis CC, Dolejska M, Izdebski R, Dobiasova H, Studentova V et al. Characterization of pKP-M1144, a novel ColE1-Like plasmid encoding IMP-8, GES-5, and BEL-1 β-lactamases, from a Klebsiella pneumoniae sequence type 252 isolate. Antimicrob Agents Chemother 2015; 59:5065–5068 [CrossRef][PubMed]
    [Google Scholar]
  45. Sherry NL, Lane CR, Kwong JC, Schultz M, Sait M et al. Genomics for Molecular Epidemiology and Detecting Transmission of Carbapenemase-Producing Enterobacterales in Victoria, Australia, 2012 to 2016. J Clin Microbiol 2019; 57: [CrossRef][PubMed]
    [Google Scholar]
  46. European Centre for Disease Prevention and Control/WHO Regional Office for Europe Surveillance of antimicrobial resistance in Europe 2017 Stockholm: European Centre for Disease Prevention and Control; 2018
    [Google Scholar]
  47. Wyres KL, Hawkey J, Hetland MAK, Fostervold A, Wick RR et al. Emergence and rapid global dissemination of CTX-M-15-associated Klebsiella pneumoniae strain ST307. J Antimicrob Chemother 2019; 74:577–581 [CrossRef][PubMed]
    [Google Scholar]
  48. Zhao W-H, Hu Z-Q. Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in gram-negative bacteria. Crit Rev Microbiol 2013; 39:79–101 [CrossRef][PubMed]
    [Google Scholar]
  49. Manageiro V, Ferreira E, Almeida J, Barbosa S, Simões C et al. Predominance of KPC-3 in a survey for carbapenemase-producing Enterobacteriaceae in Portugal. Antimicrob Agents Chemother 2015; 59:3588–3592 [CrossRef][PubMed]
    [Google Scholar]
  50. Calisto F, Caneiras C, Serqueira S, Lito L, Melo-Cristino J et al. Klebsiella pneumoniae producing carbapenemase KPC-3 identifed in hospital wards. Rev Port Doenças Infecc 2012; 8:127–134
    [Google Scholar]
  51. Al-Agamy MH, Jeannot K, El-Mahdy TS, Shibl AM, Kattan W et al. First detection of GES-5 carbapenemase-producing Acinetobacter baumannii isolate. Microb Drug Resist 2017; 23:556–562 [CrossRef][PubMed]
    [Google Scholar]
  52. Malkoçoğlu G, Aktaş E, Bayraktar B, Otlu B, Bulut ME. Vim-1, VIM-2, and GES-5 carbapenemases among Pseudomonas aeruginosa isolates at a tertiary hospital in Istanbul, Turkey. Microb Drug Resist 2017; 23:328–334 [CrossRef][PubMed]
    [Google Scholar]
  53. Moura Q, Cerdeira L, Fernandes MR, Vianello MA, Lincopan N. Novel class 1 integron (In1390) harboring blaGES-5 in a Morganella morganii strain recovered from a remote community. Diagn Microbiol Infect Dis 2018; 91:345–347 [CrossRef][PubMed]
    [Google Scholar]
  54. Bogaerts P, Bauraing C, Deplano A, Glupczynski Y. Emergence and dissemination of BEL-1-producing Pseudomonas aeruginosa isolates in Belgium. Antimicrob Agents Chemother 2007; 51:1584–1585 [CrossRef][PubMed]
    [Google Scholar]
  55. Manageiro V, Ferreira E, Caniça M, Manaia CM. GES-5 among the β-lactamases detected in ubiquitous bacteria isolated from aquatic environment samples. FEMS Microbiol Lett 2014; 351:64–69 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000349
Loading
/content/journal/mgen/10.1099/mgen.0.000349
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error