1887

Abstract

Proteins interacting with DNA are fundamental for mediating processes such as gene expression, DNA replication and maintenance of genome integrity. Accumulating evidence suggests that the chromatin of apicomplexan parasites, such as , is highly organized, and this structure provides an epigenetic mechanism for transcriptional regulation. To investigate how parasite chromatin structure is being regulated, we undertook comparative genomics analysis using 12 distinct eukaryotic genomes. We identified conserved and parasite-specific chromatin-associated domains (CADs) and proteins (CAPs). We then used the chromatin enrichment for proteomics (ChEP) approach to experimentally capture CAPs in . A topological scoring analysis of the proteomics dataset revealed stage-specific enrichments of CADs and CAPs. Finally, we characterized, two candidate CAPs: a conserved homologue of the structural maintenance of chromosome 3 protein and a homologue of the crowded-like nuclei protein, a plant-like protein functionally analogous to animal nuclear lamina proteins. Collectively, our results provide a comprehensive overview of CAPs in apicomplexans, and contribute to our understanding of the complex molecular components regulating chromatin structure and genome architecture in these deadly parasites.

Funding
This study was supported by the:
  • Michael P. Washburn , National Institute of General Medical Sciences , (Award RO1GM112639)
  • Karine G. Le Roch , University of California, Riverside , (Award NIFA-Hatch-225935)
  • Karine G. Le Roch , National Institute of Allergy and Infectious Diseases , (Award 1 R01 AI136511)
  • Karine G. Le Roch , National Institute of Allergy and Infectious Diseases , (Award 1 R01 AI06775-01)
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000327
2020-02-04
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/2/mgen000327.html?itemId=/content/journal/mgen/10.1099/mgen.0.000327&mimeType=html&fmt=ahah

References

  1. WHO The World Malaria Report 2017 (www.who.int/malaria/publications/worldmalaria-report-2017/en/) Geneva: World Health Organization; 2017
    [Google Scholar]
  2. Beugnet F, Moreau Y. Babesiosis. Rev Sci Tech 2015; 34:627–639 [CrossRef]
    [Google Scholar]
  3. Flegr J, Prandota J, Sovičková M, Israili ZH. Toxoplasmosis – a global threat. Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries. PLoS One 2014; 9:e90203 [CrossRef]
    [Google Scholar]
  4. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 2012; 7:e35671 [CrossRef]
    [Google Scholar]
  5. Bern C. Chagas' disease. N Engl J Med 2015; 373:456–466 [CrossRef]
    [Google Scholar]
  6. Kennedy PGE. Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurol 2013; 12:186–194 [CrossRef]
    [Google Scholar]
  7. Hamilton WL, Amato R, van der Pluijm RW, Jacob CG, Quang HH et al. Evolution and expansion of multidrug-resistant malaria in southeast Asia: a genomic epidemiology study. Lancet Infect Dis 2019; 19:943–951
    [Google Scholar]
  8. Sibley CH. Understanding drug resistance in malaria parasites: basic science for public health. Mol Biochem Parasitol 2014; 195:107–114 [CrossRef]
    [Google Scholar]
  9. Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis 2015; 211:670–679 [CrossRef]
    [Google Scholar]
  10. Gardner MJ, Hall N, Fung E, White O, Berriman M et al. Genome sequence of the human malaria parasite Plasmodium falciparum . Nature 2002; 419:498–511 [CrossRef]
    [Google Scholar]
  11. Bozdech Z, Llinás M, Pulliam BL, Wong ED, Zhu J et al. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum . PLoS Biol 2003; 1:e5 [CrossRef]
    [Google Scholar]
  12. Bunnik EM, Chung D-W, Hamilton M, Ponts N, Saraf A et al. Polysome profiling reveals translational control of gene expression in the human malaria parasite Plasmodium falciparum . Genome Biol 2013; 14:R128 [CrossRef]
    [Google Scholar]
  13. Lapp SA, Mok S, Zhu L, Wu H, Preiser PR et al. Plasmodium knowlesi gene expression differs in ex vivo compared to in vitro blood-stage cultures. Malar J 2015; 14:110 [CrossRef]
    [Google Scholar]
  14. Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 2003; 301:1503–1508 [CrossRef]
    [Google Scholar]
  15. Otto TD, Böhme U, Jackson AP, Hunt M, Franke-Fayard B et al. A comprehensive evaluation of rodent malaria parasite genomes and gene expression. BMC Biol 2014; 12:86 [CrossRef]
    [Google Scholar]
  16. Radke JR, Behnke MS, Mackey AJ, Radke JB, Roos DS et al. The transcriptome of Toxoplasma gondii . BMC Biol 2005; 3:26 [CrossRef]
    [Google Scholar]
  17. Sacci JB, Ribeiro JMC, Huang F, Alam U, Russell JA et al. Transcriptional analysis of in vivo Plasmodium yoelii liver stage gene expression. Mol Biochem Parasitol 2005; 142:177–183 [CrossRef]
    [Google Scholar]
  18. Balaji S, Babu MM, Iyer LM. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Res 2005; 33:3994–4006 [CrossRef]
    [Google Scholar]
  19. Coulson RMR, Hall N. Comparative genomics of transcriptional control in the human malaria parasite Plasmodium falciparum . Genome Res 2004; 14:1548–1554 [CrossRef]
    [Google Scholar]
  20. De Silva EK, Gehrke AR, Olszewski K, Leon I, Chahal JS et al. Specific DNA-binding by apicomplexan AP2 transcription factors. Proc Natl Acad Sci USA 2008; 105:8393–8398 [CrossRef]
    [Google Scholar]
  21. Iwanaga S, Kaneko I, Kato T, Yuda M. Identification of an AP2-family protein that is critical for malaria liver stage development. PLoS One 2012; 7:e47557 [CrossRef]
    [Google Scholar]
  22. Kafsack BFC, Rovira-Graells N, Clark TG, Bancells C, Crowley VM et al. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 2014; 507:248–252 [CrossRef]
    [Google Scholar]
  23. Lesage KM, Huot L, Mouveaux T, Courjol F, Saliou J-M et al. Cooperative binding of ApiAP2 transcription factors is crucial for the expression of virulence genes in Toxoplasma gondii . Nucleic Acids Res 2018; 46:6057–6068 [CrossRef]
    [Google Scholar]
  24. Radke JB, Worth D, Hong D, Huang S, Sullivan WJ et al. Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis. PLoS Pathog 2018; 14:e1007035 [CrossRef]
    [Google Scholar]
  25. Sinha A, Hughes KR, Modrzynska KK, Otto TD, Pfander C et al. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium . Nature 2014; 507:253–257 [CrossRef]
    [Google Scholar]
  26. Yuda M, Iwanaga S, Shigenobu S, Kato T, Kaneko I. Transcription factor AP2-Sp and its target genes in malarial sporozoites. Mol Microbiol 2010; 75:854–863 [CrossRef]
    [Google Scholar]
  27. Yuda M, Iwanaga S, Shigenobu S, Mair GR, Janse CJ et al. Identification of a transcription factor in the mosquito-invasive stage of malaria parasites. Mol Microbiol 2009; 71:1402–1414 [CrossRef]
    [Google Scholar]
  28. Kirchner S, Power BJ, Waters AP. Recent advances in malaria genomics and epigenomics. Genome Med 2016; 8:92 [CrossRef]
    [Google Scholar]
  29. Balu B, Maher SP, Pance A, Chauhan C, Naumov AV et al. CCR4-associated factor 1 coordinates the expression of Plasmodium falciparum egress and invasion proteins. Eukaryot Cell 2011; 10:1257–1263 [CrossRef]
    [Google Scholar]
  30. Bunnik EM, Batugedara G, Saraf A, Prudhomme J, Florens L et al. The mRNA-bound proteome of the human malaria parasite Plasmodium falciparum . Genome Biol 2016; 17:147 [CrossRef]
    [Google Scholar]
  31. Vembar SS, Macpherson CR, Sismeiro O, Coppée J-Y, Scherf A. The PfAlba1 RNA-binding protein is an important regulator of translational timing in Plasmodium falciparum blood stages. Genome Biol 2015; 16:212 [CrossRef]
    [Google Scholar]
  32. Eshar S, Altenhofen L, Rabner A, Ross P, Fastman Y et al. PfSR1 controls alternative splicing and steady-state RNA levels in Plasmodium falciparum through preferential recognition of specific RNA motifs. Mol Microbiol 2015; 96:1283–1297 [CrossRef]
    [Google Scholar]
  33. Caro F, Ahyong V, Betegon M, DeRisi JL. Genome-wide regulatory dynamics of translation in the Plasmodium falciparum asexual blood stages. eLife 2014; 3:e04106 [CrossRef]
    [Google Scholar]
  34. Foth BJ, Zhang N, Mok S, Preiser PR, Bozdech Z. Quantitative protein expression profiling reveals extensive post-transcriptional regulation and post-translational modifications in schizont-stage malaria parasites. Genome Biol 2008; 9:R177 [CrossRef]
    [Google Scholar]
  35. Ay F, Bunnik EM, Varoquaux N, Bol SM, Prudhomme J et al. Three-dimensional modeling of the P. falciparum genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression. Genome Res 2014; 24:974–988 [CrossRef]
    [Google Scholar]
  36. Dekker J. Gene regulation in the third dimension. Science 2008; 319:1793–1794 [CrossRef]
    [Google Scholar]
  37. Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science 2002; 295:1306–1311 [CrossRef]
    [Google Scholar]
  38. Fudenberg G, Getz G, Meyerson M, Mirny LA. High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nat Biotechnol 2011; 29:1109–1113 [CrossRef]
    [Google Scholar]
  39. Bunnik EM, Cook KB, Varoquaux N, Batugedara G, Prudhomme J et al. Changes in genome organization of parasite-specific gene families during the Plasmodium transmission stages. Nat Commun 2018; 9:1910
    [Google Scholar]
  40. Bunnik EM, Venkat A, Shao J, McGovern KE, Batugedara G et al. Comparative 3D genome organization in apicomplexan parasites. Proc Natl Acad Sci USA 2019; 116:3183–3192 [CrossRef]
    [Google Scholar]
  41. Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ et al. A three-dimensional model of the yeast genome. Nature 2010; 465:363–367 [CrossRef]
    [Google Scholar]
  42. Tanizawa H, Iwasaki O, Tanaka A, Capizzi JR, Wickramasinghe P et al. Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. Nucleic Acids Res 2010; 38:8164–8177 [CrossRef]
    [Google Scholar]
  43. Ong C-T, Corces VG. Ctcf: an architectural protein bridging genome topology and function. Nat Rev Genet 2014; 15:234–246 [CrossRef]
    [Google Scholar]
  44. Hiraga S, Botsios S, Donze D, Donaldson AD. TFIIIC localizes budding yeast ETC sites to the nuclear periphery. Mol Biol Cell 2012; 23:2741–2754
    [Google Scholar]
  45. Moqtaderi Z, Wang J, Raha D, White RJ, Snyder M et al. Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells. Nat Struct Mol Biol 2010; 17:635–640 [CrossRef]
    [Google Scholar]
  46. D'Ambrosio C, Schmidt CK, Katou Y, Kelly G, Itoh T et al. Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev 2008; 22:2215–2227 [CrossRef]
    [Google Scholar]
  47. Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 2008; 453:948–951 [CrossRef]
    [Google Scholar]
  48. McCulloch R, Navarro M. The protozoan nucleus. Mol Biochem Parasitol 2016; 209:76–87 [CrossRef]
    [Google Scholar]
  49. Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SWM, Solovei I et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell 2010; 38:603–613 [CrossRef]
    [Google Scholar]
  50. Brancucci NMB, Bertschi NL, Zhu L, Niederwieser I, Chin WH et al. Heterochromatin protein 1 secures survival and transmission of malaria parasites. Cell Host Microbe 2014; 16:165–176 [CrossRef]
    [Google Scholar]
  51. Volz JC, Bártfai R, Petter M, Langer C, Josling GA et al. PfSET10, a Plasmodium falciparum methyltransferase, maintains the active var gene in a poised state during parasite division. Cell Host Microbe 2012; 11:7–18 [CrossRef]
    [Google Scholar]
  52. Malmquist NA, Moss TA, Mecheri S, Scherf A, Fuchter MJ. Small-molecule histone methyltransferase inhibitors display rapid antimalarial activity against all blood stage forms in Plasmodium falciparum . Proc Natl Acad Sci USA 2012; 109:16708–16713 [CrossRef]
    [Google Scholar]
  53. Malmquist NA, Sundriyal S, Caron J, Chen P, Witkowski B et al. Histone methyltransferase inhibitors are orally bioavailable, fast-acting molecules with activity against different species causing malaria in humans. Antimicrob Agents Chemother 2015; 59:950–959 [CrossRef]
    [Google Scholar]
  54. Bischoff E, Vaquero C. In silico and biological survey of transcription-associated proteins implicated in the transcriptional machinery during the erythrocytic development of Plasmodium falciparum . BMC Genomics 2010; 11:34 [CrossRef]
    [Google Scholar]
  55. Fujita T, Fujii H. Direct identification of insulator components by insertional chromatin immunoprecipitation. PLoS One 2011; 6:e26109 [CrossRef]
    [Google Scholar]
  56. Kustatscher G, Hegarat N, Wills KLH, Furlan C, Bukowski-Wills J-C et al. Proteomics of a fuzzy organelle: interphase chromatin. EMBO J 2014; 33:648–664 [CrossRef]
    [Google Scholar]
  57. Franklin S, Chen H, Mitchell-Jordan S, Ren S, Wang Y et al. Quantitative analysis of the chromatin proteome in disease reveals remodeling principles and identifies high mobility group protein B2 as a regulator of hypertrophic growth. Mol Cell Proteomics 2012; 11:M111.014258 [CrossRef]
    [Google Scholar]
  58. Trager W, Jensen JB. Human malaria parasites in continuous culture. 1976. J Parasitol 2005; 91:484–486 [CrossRef]
    [Google Scholar]
  59. Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol 1979; 65:418–420 [CrossRef]
    [Google Scholar]
  60. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [CrossRef]
    [Google Scholar]
  61. Böhme U, Otto TD, Sanders M, Newbold CI, Berriman M. Progression of the canonical reference malaria parasite genome from 2002–2019. Wellcome Open Res 2019; 4:58 [CrossRef]
    [Google Scholar]
  62. Hoeijmakers WAM, Flueck C, Françoijs K-J, Smits AH, Wetzel J et al. Plasmodium falciparum centromeres display a unique epigenetic makeup and cluster prior to and during schizogony. Cell Microbiol 2012; 14:1391–1401 [CrossRef]
    [Google Scholar]
  63. Florens L, Washburn MP. Proteomic analysis by multidimensional protein identification technology. Methods Mol Biol 2006; 328:159–175 [CrossRef]
    [Google Scholar]
  64. Zhang Y, Wen Z, Washburn MP, Florens L. Improving proteomics mass accuracy by dynamic offline lock mass. Anal Chem 2011; 83:9344–9351 [CrossRef]
    [Google Scholar]
  65. Xu T, Park SK, Venable JD, Wohlschlegel JA, Diedrich JK et al. ProLuCID: an improved SEQUEST-like algorithm with enhanced sensitivity and specificity. J Proteomics 2015; 129:16–24 [CrossRef]
    [Google Scholar]
  66. Tabb DL, McDonald WH, Yates JR. DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J Proteome Res 2002; 1:21–26 [CrossRef]
    [Google Scholar]
  67. Zhang Y, Wen Z, Washburn MP, Florens L. Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. Anal Chem 2010; 82:2272–2281 [CrossRef]
    [Google Scholar]
  68. Choi H, Fermin D, Nesvizhskii AI. Significance analysis of spectral count data in label-free shotgun proteomics. Mol Cell Proteomics 2008; 7:2373–2385 [CrossRef]
    [Google Scholar]
  69. Choi H, Larsen B, Lin Z-Y, Breitkreutz A, Mellacheruvu D et al. SAINT: probabilistic scoring of affinity purification–mass spectrometry data. Nat Methods 2011; 8:70–73 [CrossRef]
    [Google Scholar]
  70. Sardiu ME, Gilmore JM, Groppe BD, Dutta A, Florens L et al. Topological scoring of protein interaction networks. Nat Commun 2019; 10:1118 [CrossRef]
    [Google Scholar]
  71. Lum PY, Singh G, Lehman A, Ishkanov T, Vejdemo-Johansson M et al. Extracting insights from the shape of complex data using topology. Sci Rep 2013; 3:1236 [CrossRef]
    [Google Scholar]
  72. Sardiu ME, Gilmore JM, Groppe B, Florens L, Washburn MP. Identification of topological network modules in perturbed protein interaction networks. Sci Rep 2017; 7:43845 [CrossRef]
    [Google Scholar]
  73. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012; 485:376–380 [CrossRef]
    [Google Scholar]
  74. Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 1994; 6:1211–1225 [CrossRef]
    [Google Scholar]
  75. Jeninga M, Quinn J, Petter M. ApiAP2 transcription factors in apicomplexan parasites. Pathogens 2019; 8:47 [CrossRef]
    [Google Scholar]
  76. Frankel MB, Mordue DG, Knoll LJ. Discovery of parasite virulence genes reveals a unique regulator of chromosome condensation 1 ortholog critical for efficient nuclear trafficking. Proc Natl Acad Sci USA 2007; 104:10181–10186 [CrossRef]
    [Google Scholar]
  77. Strunnikov AV, Jessberger R. Structural maintenance of chromosomes (SMC) proteins: conserved molecular properties for multiple biological functions. Eur J Biochem 1999; 263:6–13 [CrossRef]
    [Google Scholar]
  78. Freeman L, Aragon-Alcaide L, Strunnikov A. The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J Cell Biol 2000; 149:811–824 [CrossRef]
    [Google Scholar]
  79. Haering CH, Löwe J, Hochwagen A, Nasmyth K. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol Cell 2002; 9:773–788 [CrossRef]
    [Google Scholar]
  80. Iborra FJ, Jackson DA. Coupled transcription and translation within nuclei of mammalian cells. Science 2001; 293:1139–1142 [CrossRef]
    [Google Scholar]
  81. Iborra FJ, Jackson DA. The case for nuclear translation. J Cell Sci 2004; 117:5713–5720 [CrossRef]
    [Google Scholar]
  82. Fromont-Racine M, Senger B, Saveanu C, Fasiolo F. Ribosome assembly in eukaryotes. Gene 2003; 313:17–42 [CrossRef]
    [Google Scholar]
  83. Oehring SC, Woodcroft BJ, Moes S, Wetzel J, Dietz O et al. Organellar proteomics reveals hundreds of novel nuclear proteins in the malaria parasite Plasmodium falciparum . Genome Biol 2012; 13:R108 [CrossRef]
    [Google Scholar]
  84. Flueck C, Bartfai R, Niederwieser I, Witmer K, Alako BTF et al. A major role for the Plasmodium falciparum ApiAP2 protein PfSIP2 in chromosome end biology. PLoS Pathog 2010; 6:e1000784 [CrossRef]
    [Google Scholar]
  85. Soding J, Biegert A, Lupas AN. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 2005; 33:W244–W248 [CrossRef]
    [Google Scholar]
  86. Wang H, Dittmer TA, Richards EJ. Arabidopsis crowded nuclei (CRWN) proteins are required for nuclear size control and heterochromatin organization. BMC Plant Biol 2013; 13:200 [CrossRef]
    [Google Scholar]
  87. Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 2008; 132:422–433 [CrossRef]
    [Google Scholar]
  88. Rubio ED, Reiss DJ, Welcsh PL, Disteche CM, Filippova GN et al. CTCF physically links cohesin to chromatin. Proc Natl Acad Sci USA 2008; 105:8309–8314 [CrossRef]
    [Google Scholar]
  89. Glynn EF, Megee PC, Yu H-G, Mistrot C, Unal E et al. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae . PLoS Biol 2004; 2:e259 [CrossRef]
    [Google Scholar]
  90. Lengronne A, Katou Y, Mori S, Yokobayashi S, Kelly GP et al. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 2004; 430:573–578 [CrossRef]
    [Google Scholar]
  91. Weber SA, Gerton JL, Polancic JE, DeRisi JL, Koshland D et al. The kinetochore is an enhancer of pericentric cohesin binding. PLoS Biol 2004; 2:e260 [CrossRef]
    [Google Scholar]
  92. Duraisingh MT, Voss TS, Marty AJ, Duffy MF, Good RT et al. Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in Plasmodium falciparum . Cell 2005; 121:13–24 [CrossRef]
    [Google Scholar]
  93. Dzikowski R, Li F, Amulic B, Eisberg A, Frank M et al. Mechanisms underlying mutually exclusive expression of virulence genes by malaria parasites. EMBO Rep 2007; 8:959–965 [CrossRef]
    [Google Scholar]
  94. Ponts N, Harris EY, Prudhomme J, Wick I, Eckhardt-Ludka C et al. Nucleosome landscape and control of transcription in the human malaria parasite. Genome Res 2010; 20:228–238 [CrossRef]
    [Google Scholar]
  95. Tonkin CJ, Carret CK, Duraisingh MT, Voss TS, Ralph SA et al. Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum . PLoS Biol 2009; 7:e84 [CrossRef]
    [Google Scholar]
  96. Iyer LM, Anantharaman V, Wolf MY, Aravind L. Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int J Parasitol 2008; 38:1–31 [CrossRef]
    [Google Scholar]
  97. Volz J, Carvalho TG, Ralph SA, Gilson P, Thompson J et al. Potential epigenetic regulatory proteins localise to distinct nuclear sub-compartments in Plasmodium falciparum . Int J Parasitol 2010; 40:109–121 [CrossRef]
    [Google Scholar]
  98. Briquet S, Ourimi A, Pionneau C, Bernardes J, Carbone A et al. Identification of Plasmodium falciparum nuclear proteins by mass spectrometry and proposed protein annotation. PLoS One 2018; 13:e0205596 [CrossRef]
    [Google Scholar]
  99. Flueck C, Bartfai R, Volz J, Niederwieser I, Salcedo-Amaya AM et al. Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors. PLoS Pathog 2009; 5:e1000569 [CrossRef]
    [Google Scholar]
  100. Bernard P, Maure JF, Partridge JF, Genier S, Javerzat JP. Requirement of heterochromatin for cohesion at centromeres. Science 2001; 294:2539–2542 [CrossRef]
    [Google Scholar]
  101. Yi Q, Chen Q, Liang C, Yan H, Zhang Z et al. HP1 links centromeric heterochromatin to centromere cohesion in mammals. EMBO Rep 2018; 19:e45484 [CrossRef]
    [Google Scholar]
  102. Jang C-W, Shibata Y, Starmer J, Yee D, Magnuson T. Histone H3.3 maintains genome integrity during mammalian development. Genes Dev 2015; 29:1377–1392 [CrossRef]
    [Google Scholar]
  103. Mochizuki R, Tsugama D, Yamazaki M, Fujino K, Masuda K. Identification of candidates for interacting partners of the tail domain of DcNMCP1, a major component of the Daucus carota nuclear lamina-like structure. Nucleus 2017; 8:312–322 [CrossRef]
    [Google Scholar]
  104. Ciska M, Masuda K, Moreno Díaz de la Espina S. Lamin-like analogues in plants: the characterization of NMCP1 in Allium cepa . J Exp Bot 2013; 64:1553–1564 [CrossRef]
    [Google Scholar]
  105. DuBois KN, Alsford S, Holden JM, Buisson J, Swiderski M et al. NUP-1 Is a large coiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions. PLoS Biol 2012; 10:e1001287 [CrossRef]
    [Google Scholar]
  106. Zhang M, Wang C, Otto TD, Oberstaller J, Liao X et al. Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science 2018; 360:eaap7847 [CrossRef]
    [Google Scholar]
  107. Stubbs J, Simpson KM, Triglia T, Plouffe D, Tonkin CJ. Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes. Science 2005; 309:1384–1387 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000327
Loading
/content/journal/mgen/10.1099/mgen.0.000327
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error