1887

Abstract

Tuberculosis (TB) surveillance is scarce in most African countries, even though it is the continent with the greatest disease incidence according to the World Health Organization. Liberia is within the 30 countries with the highest TB burden, probably as a consequence of the long civil war and the recent Ebola outbreak, both crippling the health system and depreciating the TB prevention and control programmes. Due to difficulties working in the country, there is a lack of resistance surveys and bacillus characterization. Here, we use genome sequencing of clinical isolates to fill this gap. Our results highlight that the bacillus population structure is dominated by lineage 4 strains that harbour an outstanding genetic diversity, higher than in the rest of Africa as a whole. Coalescent analyses demonstrate that strains currently circulating in Liberia were introduced several times beginning in the early year 600 CE until very recently coinciding with migratory movements associated with the civil war and Ebola epidemics. A higher multidrug-resistant (MDR)-TB frequency (23.5 %) than current estimates was obtained together with non-catalogued drug-resistance mutations. Additionally, 39 % of strains were in genomic clusters revealing that ongoing transmission is a major contribution to the TB burden in the country. Our report emphasizes the importance of TB surveillance and control in African countries where bacillus diversity, MDR-TB prevalence and transmission are coalescing to jeopardize TB control programmes.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000325
2020-01-14
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10.1099/mgen.0.000325/mgen000325.html?itemId=/content/journal/mgen/10.1099/mgen.0.000325&mimeType=html&fmt=ahah

References

  1. Dogba JB, Cadmus SIB, Olugasa BO. Mapping of Mycobacterium tuberculosis cases in post-conflict Liberia, 2008-2012: a descriptive and categorical analysis of age, gender and seasonal pattern. Afr J Med Med Sci 2014;43:117–124
    [Google Scholar]
  2. Wagenaar BH, Augusto O, Beste J, Toomay SJ, Wickett E et al. The 2014–2015 Ebola virus disease outbreak and primary healthcare delivery in Liberia: time-series analyses for 2010–2016. PLoS Med 2018;15:e1002508 [CrossRef]
    [Google Scholar]
  3. Desta KT, Masango TE, Nkosi ZZ. Performance of the National Tuberculosis Control Program in the post conflict Liberia. PLoS One 2018;13:e0199474 [CrossRef]
    [Google Scholar]
  4. WHO Global Tuberculosis Report 2018 Geneva: World Health Organization; 2019
    [Google Scholar]
  5. Zignol M, Cabibbe AM, Dean AS, Glaziou P, Alikhanova N et al. Genetic sequencing for surveillance of drug resistance in tuberculosis in highly endemic countries: a multi-country population-based surveillance study. Lancet Infect Dis 2018;18:675–683 [CrossRef]
    [Google Scholar]
  6. Allix-Béguec C, Arandjelovic I, Bi L, Beckert P, Bonnet M et al. Prediction of susceptibility to first-line tuberculosis drugs by DNA sequencing. N Engl J Med 2018;379:1403–1415 [CrossRef]
    [Google Scholar]
  7. Manson AL, Abeel T, Galagan JE, Sundaramurthi JC, Salazar A et al. Mycobacterium tuberculosis whole genome sequences from Southern India suggest novel resistance mechanisms and the need for region-specific diagnostics. Clin Infect Dis 2017;64:1494–1501 [CrossRef]
    [Google Scholar]
  8. Canetti G, Froman S, Grosset J, Hauduroy P, Langerova M et al. Mycobacteria: laboratory methods for testing drug sensitivity and resistance. Bull World Health Organ 1963;29:565–578
    [Google Scholar]
  9. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018;34:i884–i890 [CrossRef]
    [Google Scholar]
  10. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014;15:R46 [CrossRef]
    [Google Scholar]
  11. Comas I, Coscolla M, Luo T, Borrell S, Holt KE et al. Out-of-Africa migration and neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 2013;45:1176–1182 [CrossRef]
    [Google Scholar]
  12. Stucki D, Brites D, Jeljeli L, Coscolla M, Liu Q et al. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet 2016;48:1535–1543 [CrossRef]
    [Google Scholar]
  13. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–1760 [CrossRef]
    [Google Scholar]
  14. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011;27:2987–2993 [CrossRef]
    [Google Scholar]
  15. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012;22:568–576 [CrossRef]
    [Google Scholar]
  16. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297–1303 [CrossRef]
    [Google Scholar]
  17. Ngo T-M, Teo Y-Y. Genomic prediction of tuberculosis drug-resistance: benchmarking existing databases and prediction algorithms. BMC Bioinformatics 2019;20:68 [CrossRef]
    [Google Scholar]
  18. Coll F, McNerney R, Guerra-Assunção JA, Glynn JR, Perdigão J et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun 2014;5:4812 [CrossRef]
    [Google Scholar]
  19. Sobkowiak B, Glynn JR, Houben RMGJ, Mallard K, Phelan JE et al. Identifying mixed Mycobacterium tuberculosis infections from whole genome sequence data. BMC Genomics 2018;19:613 [CrossRef]
    [Google Scholar]
  20. Comas I, Borrell S, Roetzer A, Rose G, Malla B et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 2012;44:106–110 [CrossRef]
    [Google Scholar]
  21. Chiner-Oms Á, Sánchez-Busó L, Corander J, Gagneux S, Harris SR et al. Genomic determinants of speciation and spread of the Mycobacterium tuberculosis complex. Sci Adv 2019;5:eaaw3307 [CrossRef]
    [Google Scholar]
  22. Hazbón MH, Brimacombe M, Bobadilla del Valle M, Cavatore M, Guerrero MI et al. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 2006;50:2640–2649 [CrossRef]
    [Google Scholar]
  23. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef]
    [Google Scholar]
  24. Guerra-Assunção JA, Crampin AC, Houben RMGJ, Mzembe T, Mallard K et al. Large-scale whole genome sequencing of M. tuberculosis provides insights into transmission in a high prevalence area. Elife 2015;4:e05166 [CrossRef]
    [Google Scholar]
  25. Holt KE, McAdam P, Thai PVK, Thuong NTT, Ha DTM et al. Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam. Nat Genet 2018;50:849–856 [CrossRef]
    [Google Scholar]
  26. Liu Q, Ma A, Wei L, Pang Y, Wu B et al. China's tuberculosis epidemic stems from historical expansion of four strains of Mycobacterium tuberculosis. Nat Ecol Evol 2018;2:1982–1992 [CrossRef]
    [Google Scholar]
  27. Merker M, Blin C, Mona S, Duforet-Frebourg N, Lecher S et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet 2015;47:242–249 [CrossRef]
    [Google Scholar]
  28. Zhang H, Li D, Zhao L, Fleming J, Lin N et al. Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat Genet 2013;45:1255–1260 [CrossRef]
    [Google Scholar]
  29. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef]
    [Google Scholar]
  30. Menardo F, Loiseau C, Brites D, Coscolla M, Gygli SM et al. Treemmer: a tool to reduce large phylogenetic datasets with minimal loss of diversity. BMC Bioinformatics 2018;19:164 [CrossRef]
    [Google Scholar]
  31. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H et al. Beast 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 2014;10:e1003537 [CrossRef]
    [Google Scholar]
  32. Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N et al. Pre-Columbian mycobacterial genomes reveal seals as a source of new world human tuberculosis. Nature 2014;514:494–497 [CrossRef]
    [Google Scholar]
  33. Yu Y, Harris AJ, Blair C, He X. Rasp (reconstruct ancestral state in phylogenies): a tool for historical biogeography. Mol Phylogenet Evol 2015;87:46–49 [CrossRef]
    [Google Scholar]
  34. Rutaihwa LK, Menardo F, Stucki D, Gygli SM, Ley SD et al. Multiple introductions of Mycobacterium tuberculosis lineage 2–Beijing into Africa over centuries. Front Ecol Evol 2019;7:112 [CrossRef]
    [Google Scholar]
  35. Shitikov E, Kolchenko S, Mokrousov I, Bespyatykh J, Ischenko D et al. Evolutionary pathway analysis and unified classification of East Asian lineage of Mycobacterium tuberculosis. Sci Rep 2017;7:9227 [CrossRef]
    [Google Scholar]
  36. Meehan CJ, Moris P, Kohl TA, Pečerska J, Akter S et al. The relationship between transmission time and clustering methods in Mycobacterium tuberculosis epidemiology. EBioMedicine 2018;37:410–416 [CrossRef]
    [Google Scholar]
  37. Bertrand T, Eady NAJ, Jones JN, Jesmin S, Nagy JM et al. Crystal structure of Mycobacterium tuberculosis catalase-peroxidase. J Biol Chem 2004;279:38991–38999 [CrossRef]
    [Google Scholar]
  38. Cancino-Muñoz I, Moreno-Molina M, Furió V, Goig GA, Torres-Puente M et al. Cryptic resistance mutations associated with misdiagnoses of multidrug-resistant tuberculosis. J Infect Dis 2019;220:316–320 [CrossRef]
    [Google Scholar]
  39. Seifert M, Catanzaro D, Catanzaro A, Rodwell TC. Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review. PLoS One 2015;10:e0119628 [CrossRef]
    [Google Scholar]
  40. Comas I, Hailu E, Kiros T, Bekele S, Mekonnen W et al. Population genomics of Mycobacterium tuberculosis in Ethiopia contradicts the virgin soil hypothesis for human tuberculosis in sub-Saharan Africa. Curr Biol 2015;25:3260–3266 [CrossRef]
    [Google Scholar]
  41. Mbugi EV, Katale BZ, Streicher EM, Keyyu JD, Kendall SL et al. Mapping of Mycobacterium tuberculosis complex genetic diversity profiles in Tanzania and other African countries. PLoS One 2016;11:e0154571 [CrossRef]
    [Google Scholar]
  42. Luo T, Comas I, Luo D, Lu B, Wu J et al. Southern East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. Proc Natl Acad Sci USA 2015;112:8136–8141 [CrossRef]
    [Google Scholar]
  43. de Jong BC, Antonio M, Gagneux S. Mycobacterium africanum – review of an important cause of human tuberculosis in West Africa. PLoS Negl Trop Dis 2010;4:e744 [CrossRef]
    [Google Scholar]
  44. Sanoussi C N'Dira, Affolabi D, Rigouts L, Anagonou S, de Jong B. Genotypic characterization directly applied to sputum improves the detection of Mycobacterium africanum West African 1, under-represented in positive cultures. PLoS Negl Trop Dis 2017;11:e0005900 [CrossRef]
    [Google Scholar]
  45. Mokrousov I, Ly HM, Otten T, Lan NN, Vyshnevskyi B et al. Origin and primary dispersal of the Mycobacterium tuberculosis Beijing genotype: clues from human phylogeography. Genome Res 2005;15:1357–1364 [CrossRef]
    [Google Scholar]
  46. Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC et al. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2006;103:2869–2873 [CrossRef]
    [Google Scholar]
  47. Wirth T, Hildebrand F, Allix-Béguec C, Wölbeling F, Kubica T et al. Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog 2008;4:e1000160 [CrossRef]
    [Google Scholar]
  48. Chihota VN, Niehaus A, Streicher EM, Wang X, Sampson SL et al. Geospatial distribution of Mycobacterium tuberculosis genotypes in Africa. PLoS One 2018;13:e0200632 [CrossRef]
    [Google Scholar]
  49. Ndungu PW, Revathi G, Kariuki S, Ng’ang’a Z. Risk factors in the transmission of tuberculosis in Nairobi: a descriptive epidemiological study. Adv Microbiol 2013;03:160–165 [CrossRef]
    [Google Scholar]
  50. Alyamani EJ, Marcus SA, Ramirez-Busby SM, Hansen C, Rashid J et al. Genomic analysis of the emergence of drug-resistant strains of Mycobacterium tuberculosis in the Middle East. Sci Rep 2019;9:4474 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000325
Loading
/content/journal/mgen/10.1099/mgen.0.000325
Loading

Data & Media loading...

Supplements

Supplementary material 2

EXCEL

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error