1887

Abstract

Carbapenemase-producing (CPE) are an increasingly common cause of healthcare-associated infections and may occasionally be identified in patients without extensive healthcare exposure. is the most frequently detected carbapenemase gene in within Australia, but little is known about the mechanisms behind its persistence. Here we used whole genome sequencing (WGS) to investigate the molecular epidemiology of in Queensland, Australia. In total, 107 CPE were collected between 2014 and 2017 and sent for WGS on an Illumina NextSeq500. Resistance genes and plasmid types were detected using a combination of read mapping and nucleotide comparison of assemblies. Six isolates were additionally sequenced using Oxford Nanopore MinION to generate long-reads and fully characterize the context of the gene. Of 107 CPE, 93 carried the gene; 74/107 also carried an IncHI2 plasmid, suggesting carriage of the gene on an IncHI2 plasmid. Comparison of these isolates to a previously characterized IncHI2 plasmid pMS7884A (isolated from an strain in Brisbane) suggested that all isolates carried a similar plasmid. Five of six representative isolates sequenced using Nanopore long-read technology carried IncHI2 plasmids harbouring the gene. While the vast majority of isolates represented , several other species were also found to carry the IncHI2 plasmid, including species, and species. Several clonal groups of were also identified, suggesting that persistence of is driven by both presence on a common plasmid and clonal spread of certain lineages.

Funding
This study was supported by the:
  • National Health and Medical Research Council (Award GNT1090456)
    • Principle Award Recipient: Scott A. Beatson
  • Australian Government Research Training Program
    • Principle Award Recipient: Leah W. Roberts
  • National Health and Medical Research Council (Award GNT1157530)
    • Principle Award Recipient: Patrick N A Harris
  • Pathology Queensland, SERC (Award 5525)
    • Principle Award Recipient: Patrick N A Harris
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000321
2019-12-20
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/1/mgen000321.html?itemId=/content/journal/mgen/10.1099/mgen.0.000321&mimeType=html&fmt=ahah

References

  1. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis 2017; 215:S28–S36 [View Article]
    [Google Scholar]
  2. Falagas ME, Tansarli GS, Karageorgopoulos DE, Vardakas KZ. Deaths attributable to carbapenem-resistant Enterobacteriaceae infections. Emerg Infect Dis 2014; 20:1170–1175 [View Article]
    [Google Scholar]
  3. Australian Group on Antimicrobial Resistance Gram-negative Sepsis Outcome Programme (2016) AGAR; 2017
    [Google Scholar]
  4. Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clinical Microbiology and Infection 2014; 20:821–830 [View Article]
    [Google Scholar]
  5. Bonomo RA, Burd EM, Conly J, Limbago BM, Poirel L et al. Carbapenemase-producing organisms: a global scourge! clinical infectious diseases: an official publication of the infectious diseases society of America; 2017
  6. van Duin D, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2017; 8:460–469 [View Article]
    [Google Scholar]
  7. Paño-Pardo JR, López Quintana B, Lázaro Perona F, Ruiz Carrascoso G, Romero-Gómez MP et al. Community-onset bloodstream and other infections, caused by carbapenemase-producing Enterobacteriaceae: epidemiological, microbiological, and clinical features. Open Forum Infectious Diseases 2016; 3:ofw136 [View Article]
    [Google Scholar]
  8. Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis 2017; 17:153–163 [View Article]
    [Google Scholar]
  9. Mairi A, Pantel A, Sotto A, Lavigne JP, Touati A. OXA-48-like carbapenemases producing Enterobacteriaceae in different niches. Eur J Clin Microbiol Infect Dis 2017
    [Google Scholar]
  10. Khan AU, Maryam L, Zarrilli R, Structure ZR. Structure, genetics and worldwide spread of New Delhi metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol 2017; 17:101 [View Article]
    [Google Scholar]
  11. Sidjabat HE, Townell N, Nimmo GR, George NM, Robson J et al. Dominance of IMP-4-producing Enterobacter cloacae among carbapenemase-producing Enterobacteriaceae in Australia. Antimicrob Agents Chemother 2015; 59:4059–4066 [View Article]
    [Google Scholar]
  12. Matsumura Y, Peirano G, Motyl MR, Adams MD, Chen L et al. Global molecular epidemiology of IMP-Producing Enterobacteriaceae. Antimicrob Agents Chemother 2017; 61: [View Article]
    [Google Scholar]
  13. Mathers AJ, Stoesser N, Sheppard AE, Pankhurst L, Giess A et al. Klebsiella pneumoniae Carbapenemase (KPC)-Producing K. pneumoniae at a Single Institution: Insights into Endemicity from Whole-Genome Sequencing. Antimicrob Agents Chemother 2015; 59:1656–1663 [View Article]
    [Google Scholar]
  14. Kwong JC, Lane CR, Romanes F, Gonçalves da Silva A, Easton M et al. Translating genomics into practice for real-time surveillance and response to carbapenemase-producing Enterobacteriaceae: evidence from a complex multi-institutional KPC outbreak. PeerJ 2018; 6:e4210 [View Article]
    [Google Scholar]
  15. European Committee on antimicrobial susceptibility testing. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance, version 2.0. EUCAST 2017
    [Google Scholar]
  16. Swayne RL, Ludlam HA, Shet VG, Woodford N, Curran MD. Real-Time TaqMan PCR for rapid detection of genes encoding five types of non-metallo- (class A and D) carbapenemases in Enterobacteriaceae. Int J Antimicrob Agents 2011; 38:35–38 [View Article]
    [Google Scholar]
  17. Naas T, Ergani A, Carrër A, Nordmann P. Real-Time PCR for detection of NDM-1 carbapenemase genes from spiked stool samples. Antimicrob Agents Chemother 2011; 55:4038–4043 [View Article]
    [Google Scholar]
  18. Hindiyeh M, Smollen G, Grossman Z, Ram D, Davidson Y et al. Rapid detection of blaKPC carbapenemase genes by real-time PCR. J Clin Microbiol 2008; 46:2879–2883 [View Article]
    [Google Scholar]
  19. Carter I. Metallo β lactamases gene blaimp, blaSPM and blaVIM detection by multiplex real-time TaqMan assay on the smartcycler. In Schuller MST, James G, Halliday C, Carter I. (editors) PCR for Clinical Microbiology Dordrecht: Springer; 2010 pp 423–427
    [Google Scholar]
  20. Charlson M, Szatrowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. J Clin Epidemiol 1994; 47:1245–1251 [View Article]
    [Google Scholar]
  21. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article]
    [Google Scholar]
  22. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014; 15:R46 [View Article]
    [Google Scholar]
  23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  24. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k -mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article]
    [Google Scholar]
  25. Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011; 12:402 [View Article]
    [Google Scholar]
  26. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics 2011; 27:1009–1010 [View Article]
    [Google Scholar]
  27. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article]
    [Google Scholar]
  28. Center for Genomic Epidemiology ResFinder. Available from. http://www.genomicepidemiology.org
  29. Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 2014; 58:212–220 [View Article]
    [Google Scholar]
  30. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using plasmid finder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article]
    [Google Scholar]
  31. Inouye M, Dashnow H, Raven L-A, Schultz MB, Pope BJ et al. SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 2014; 6:90 [View Article]
    [Google Scholar]
  32. Ondov BDT, Phillippy TJ. A. M. Parsnp v1.2 2014; 2014
  33. Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 2017
    [Google Scholar]
  34. Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M et al. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics 2012; 13:87 [View Article]
    [Google Scholar]
  35. Roberts LW, Harris PNA, Forde BM, Ben Zakour NL, Stanton-Cook M et al. Integrating multiple genomic technologies to investigate an outbreak of carbapenemase-producing Enterobacter hormaechei. BioRxiv 2019
    [Google Scholar]
  36. Partridge SR, Ginn AN, Paulsen IT, Iredell JR. pEl1573 Carrying bla IMP-4, from Sydney, Australia, is closely related to other IncL/M plasmids. Antimicrob Agents Chemother 2012; 56:6029–6032 [View Article]
    [Google Scholar]
  37. Doi Y, Paterson DL. Carbapenemase-producing Enterobacteriaceae. Semin Resp Crit Care Med 2015; 36:74–84
    [Google Scholar]
  38. Moura A, Criscuolo A, Pouseele H, Maury MM, Leclercq A et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes . Nat Microbiol 2017; 2:16185 [View Article]
    [Google Scholar]
  39. Aanensen DM, Feil EJ, Holden MTG, Dordel J, Yeats CA et al. Whole-Genome Sequencing for Routine Pathogen Surveillance in Public Health: a Population Snapshot of Invasive Staphylococcus aureus in Europe. mBio 2016; 7: [View Article]
    [Google Scholar]
  40. Roetzer A, Diel R, Kohl TA, Rückert C, Nübel U et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med 2013; 10:e1001387 [View Article]
    [Google Scholar]
  41. Arredondo-Alonso S, Willems RJ, van Schaik W, Schürch AC. On the (im)possibility of reconstructing plasmids from whole-genome short-read sequencing data. Microb Genom 2017; 3:e000128 [View Article]
    [Google Scholar]
  42. Lee C-R, Lee JH, Park KS, Kim YB, Jeong BC et al. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol 2016; 7:895 [View Article]
    [Google Scholar]
  43. AURA Third Australian report on antimicrobial use and resistane in human health; 2019
  44. Sherry NL, Lane CR, Kwong JC, Schultz M, Sait M et al. Genomics for molecular epidemiology and detecting transmission of carbapenemase-producing Enterobacterales in Victoria, Australia, 2012 to 2016. J Clin Microbiol 2019; 57: [View Article]
    [Google Scholar]
  45. Stimson J, Gardy J, Mathema B, Crudu V, Cohen T et al. Beyond the SNP threshold: identifying outbreak clusters using inferred transmissions. Mol Biol Evol 2019; 36:587–603 [View Article]
    [Google Scholar]
  46. Sidjabat HE, Heney C, George NM, Nimmo GR, Paterson DL. Interspecies transfer of blaIMP-4 in a patient with prolonged colonization by IMP-4-producing Enterobacteriaceae. J Clin Microbiol 2014; 52:3816–3818 [View Article]
    [Google Scholar]
  47. Abraham S, O’Dea M, Trott DJ, Abraham RJ, Hughes D et al. Isolation and plasmid characterization of carbapenemase (IMP-4) producing Salmonella enterica typhimurium from cats. Sci Rep 2016; 6:35527 [View Article]
    [Google Scholar]
  48. Dolejska M, Masarikova M, Dobiasova H, Jamborova I, Karpiskova R et al. High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia. J Antimicrob Chemother 2016; 71:63–70 [View Article]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000321
Loading
/content/journal/mgen/10.1099/mgen.0.000321
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error