1887

Abstract

is a recently recognized human enteropathogen that is closely related to . In many Gram-negative bacteria, including , O-antigen variation has long been used for the serotyping of strains. In , while eight O-serotypes unique to this species have been identified, some strains have been shown to exhibit genetic or serological similarity to known / O-serotypes. However, the diversity of O-serotypes and O-antigen biosynthesis gene clusters (O-AGCs) of remains to be systematically investigated. Here, we analysed the O-AGCs of 65 strains and identified 40 O-genotypes (EAOgs) (named EAOg1–EAOg40). Analyses of the 40 EAOgs revealed that as many as 20 EAOgs exhibited significant genetic and serological similarity to the O-AGCs of known / O-serotypes, and provided evidence for the inter-species horizontal gene transfer of O-AGCs between and . Based on the sequence variation in the gene among the 40 EAOgs, we developed a multiplex PCR-based O-genotyping system for (EAO-genotyping PCR) and verified its usefulness by genotyping 278 strains from various sources. Although 225 (80.9 %) of the 278 strains could be genotyped, 51 were not assigned to any of the 40 EAOgs, indicating that further analyses are required to better understand the diversity of O-AGCs in and improve the EAO-genotyping PCR method. A phylogenetic view of strains sequenced so far is also presented with the distribution of the 40 EAOgs, which provided multiple examples for the intra-species horizontal transfer of O-AGCs in .

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000314
2019-11-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/mgen/5/11/mgen000314.html?itemId=/content/journal/mgen/10.1099/mgen.0.000314&mimeType=html&fmt=ahah

References

  1. Huys G, Cnockaert M, Janda JM, Swings J. Escherichia albertii sp. nov., a diarrhoeagenic species isolated from stool specimens of Bangladeshi children. Int J Syst Evol Microbiol 2003;53:807–810 [CrossRef]
    [Google Scholar]
  2. Oaks JL, Besser TE, Walk ST, Gordon DM, Beckmen KB et al. Escherichia albertii in wild and domestic birds. Emerg Infect Dis 2010;16:638–646 [CrossRef]
    [Google Scholar]
  3. Ooka T, Seto K, Kawano K, Kobayashi H, Etoh Y et al. Clinical significance of Escherichia albertii. Emerg Infect Dis 2012;18:488–492 [CrossRef]
    [Google Scholar]
  4. Ooka T, Tokuoka E, Furukawa M, Nagamura T, Ogura Y et al. Human gastroenteritis outbreak associated with Escherichia albertii, Japan. Emerg Infect Dis 2013;19:144–146 [CrossRef]
    [Google Scholar]
  5. Inglis TJJ, Merritt AJ, Bzdyl N, Lansley S, Urosevic MN. First bacteraemic human infection with Escherichia albertii. New Microbes New Infect 2015;8:171–173 [CrossRef]
    [Google Scholar]
  6. National Institute of Infectious Diseases Enterohemorrhagic Escherichia coli (EHEC) infection, as of April 2016, Japan. Infect Agents Surveill Rep 2016;37:435
    [Google Scholar]
  7. Murakami K, Etoh Y, Tanaka E, Ichihara S, Horikawa K et al. Shiga toxin 2f-producing Escherichia albertii from a symptomatic human. Jpn J Infect Dis 2014;67:204–208 [CrossRef]
    [Google Scholar]
  8. Brandal LT, Tunsjø HS, Ranheim TE, Løbersli I, Lange H et al. Shiga toxin 2A in Escherichia albertii. J Clin Microbiol 2015;53:1454–1455 [CrossRef]
    [Google Scholar]
  9. Ooka T, Ogura Y, Katsura K, Seto K, Kobayashi H et al. Defining the genome features of Escherichia albertii, an emerging enteropathogen closely related to Escherichia coli. Genome Biol Evol 2015;7:3170–3179
    [Google Scholar]
  10. Romão FT, Hernandes RT, Ooka T, Hayashi T, Sperandio V et al. Complete genome sequence of Escherichia albertii strain 1551-2, a potential extracellular and intracellular pathogen. Genome Announc 2018;6:e00075-18 [CrossRef]
    [Google Scholar]
  11. Fiedoruk K, Daniluk T, Swiecicka I, Murawska E, Sciepuk M et al. First complete genome sequence of Escherichia albertii strain KF1, a new potential human enteric pathogen. Genome Announc 2014;2:e00004-14 [CrossRef]
    [Google Scholar]
  12. Schroeder MR, Juieng P, Batra D, Knipe K, Rowe LA et al. High-quality complete and draft genome sequences for three Escherichia spp. and three Shigella spp. generated with Pacific Biosciences and Illumina sequencing and optical mapping. Genome Announc 2018;6:e01384-17 [CrossRef]
    [Google Scholar]
  13. Lindsey RL, Rowe LA, Batra D, Smith P, Strockbine NA. PacBio genome sequences of eight Escherichia albertii strains isolated from humans in the United States. Microbiol Resour Announc 2019;8:e01663-18 [CrossRef]
    [Google Scholar]
  14. Stenutz R, Weintraub A, Widmalm G. The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol Rev 2006;30:382–403 [CrossRef]
    [Google Scholar]
  15. Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN et al. Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol Rev 2014;38:56–89 [CrossRef]
    [Google Scholar]
  16. Iguchi A, Iyoda S, Kikuchi T, Ogura Y, Katsura K et al. A complete view of the genetic diversity of the Escherichia coli O-antigen biosynthesis gene cluster. DNA Research 2015;22:101–107 [CrossRef]
    [Google Scholar]
  17. Iguchi A, Iyoda S, Seto K, Nishii H, Ohnishi M et al. Six novel O genotypes from Shiga toxin-producing Escherichia coli. Front Microbiol 2016;7:765 [CrossRef]
    [Google Scholar]
  18. Samuel G, Reeves P. Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr Res 2003;338:2503–2519 [CrossRef]
    [Google Scholar]
  19. Wang W, Perepelov AV, Feng L, Shevelev SD, Wang Q et al. A group of Escherichia coli and Salmonella enterica O antigens sharing a common backbone structure. Microbiology 2007;153:2159–2167 [CrossRef]
    [Google Scholar]
  20. Wang Q, Perepelov AV, Wen L, Shashkov AS, Wang X et al. Identification of the two glycosyltransferase genes responsible for the difference between Escherichia coli O107 and O117 O-antigens. Glycobiology 2012;22:281–287 [CrossRef]
    [Google Scholar]
  21. Wang H, Zheng H, Li Q, Xu Y, Wang J et al. Defining the genetic features of O-antigen biosynthesis gene cluster and performance of an O-antigen serotyping scheme for Escherichia albertii. Front Microbiol 2017;8:1857
    [Google Scholar]
  22. Zheng H, Shashkov AS, Xiong Y, Naumenko OI, Wang H et al. Structure and gene cluster of the O-antigen of Escherichia albertii O1 resembling the O-antigen of Pseudomonas aeruginosa O5. Carbohydr Res 2017;446-447:28–31 [CrossRef]
    [Google Scholar]
  23. Naumenko OI, Zheng H, Senchenkova SN, Wang H, Li Q et al. Structures and gene clusters of the O-antigens of Escherichia albertii O3, O4, O6, and O7. Carbohydr Res 2017;449:17–22 [CrossRef]
    [Google Scholar]
  24. Naumenko OI, Zheng H, Wang J, Senchenkova SN, Wang H et al. Structure elucidation of the O-specific polysaccharide by NMR spectroscopy and selective cleavage and genetic characterization of the O-antigen of Escherichia albertii O5. Carbohydr Res 2018;457:25–31 [CrossRef]
    [Google Scholar]
  25. Naumenko OI, Zheng H, Xiong Y, Senchenkova SN, Wang H et al. Studies on the O-polysaccharide of Escherichia albertii O2 characterized by non-stoichiometric O-acetylation and non-stoichiometric side-chain L-fucosylation. Carbohydr Res 2018;461:80–84 [CrossRef]
    [Google Scholar]
  26. Zheng H, Naumenko OI, Wang H, Xiong Y, Wang J et al. Colitose-containing O-polysaccharide structure and O-antigen gene cluster of Escherichia albertii HK18069 related to those of Escherichia coli O55 and E. coli O128. Carbohydr Res 2019;480:73–79 [CrossRef]
    [Google Scholar]
  27. Rahman MZ, Akter S, Azmuda N, Sultana M, Weill FX et al. Serological cross-reaction between O-antigens of Shigella dysenteriae type 4 and an environmental Escherichia albertii isolate. Curr Microbiol 2013;67:590–595 [CrossRef]
    [Google Scholar]
  28. Hyma KE, Lacher DW, Nelson AM, Bumbaugh AC, Janda JM et al. Evolutionary genetics of a new pathogenic Escherichia species: Escherichia albertii and related Shigella boydii strains. J Bacteriol 2005;187:619–628 [CrossRef]
    [Google Scholar]
  29. Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 2014;24:1384–1395 [CrossRef]
    [Google Scholar]
  30. Finn RD, Mistry J, Tate J, Coggill P, Heger A et al. The Pfam protein families database. Nucleic Acids Res 2010;38:D211–D222 [CrossRef]
    [Google Scholar]
  31. DebRoy C, Fratamico PM, Yan X, Baranzoni G, Liu Y et al. Comparison of O-antigen gene clusters of all O-serogroups of Escherichia coli and proposal for adopting a new nomenclature for O-typing. PLoS One 2016;11:e0147434 [CrossRef]
    [Google Scholar]
  32. Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN et al. Structure and genetics of Shigella O antigens. FEMS Microbiol Rev 2008;32:627–653 [CrossRef]
    [Google Scholar]
  33. Ooka T, Terajima J, Kusumoto M, Iguchi A, Kurokawa K et al. Development of a multiplex PCR-based rapid typing method for enterohemorrhagic Escherichia coli O157 strains. J Clin Microbiol 2009;47:2888–2894 [CrossRef]
    [Google Scholar]
  34. Zhou Z, Alikhan NF, Mohamed K, Achtman M. The Agama Study Group The user's guide to comparative genomics with EnteroBase. Three case studies: micro-clades within Salmonella enterica serovar Agama, ancient and modern populations of Yersinia pestis, and core genomic diversity of all Escherichia. bioRxiv 2019
    [Google Scholar]
  35. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells and metagenomes. Genome Res 2015;25:1043–1055 [CrossRef]
    [Google Scholar]
  36. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef]
    [Google Scholar]
  37. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef]
    [Google Scholar]
  38. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015;31:3691–3693 [CrossRef]
    [Google Scholar]
  39. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef]
    [Google Scholar]
  40. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016;44:W242–W245 [CrossRef]
    [Google Scholar]
  41. Iguchi A, Iyoda S, Seto K, Morita-Ishihara T, Scheutz F et al. Escherichia coli O-genotyping PCR: a comprehensive and practical platform for molecular O serogrouping. J Clin Microbiol 2015;53:2427–2432 [CrossRef]
    [Google Scholar]
  42. Fegan N, Barlow RS, Gobius KS. Escherichia coli O157 somatic antigen is present in an isolate of E. fergusonii. Curr Microbiol 2006;52:482–486 [CrossRef]
    [Google Scholar]
  43. Joensen KG, Tetzschner AMM, Iguchi A, Aarestrup FM, Scheutz F. Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. J Clin Microbiol 2015;53:2410–2426 [CrossRef]
    [Google Scholar]
  44. Iguchi A, Ooka T, Ogura Y, Nakayama K, Frankel G et al. Genomic comparison of the O-antigen biosynthesis gene clusters of Escherichia coli O55 strains belonging to three distinct lineages. Microbiology 2008;154:559–570 [CrossRef]
    [Google Scholar]
  45. Iguchi A, Iyoda S, Ohnishi M. on behalf of the EHEC Study Group Molecular characterization reveals three distinct clonal groups among clinical Shiga toxin-producing Escherichia coli strains of serogroup O103. J Clin Microbiol 2012;50:2894–2900 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000314
Loading
/content/journal/mgen/10.1099/mgen.0.000314
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error