1887

Abstract

constitutes a significant part of the normal human gut microbiota and can also act as an opportunistic pathogen. Antimicrobial resistance (AMR) and the prevalence of AMR genes are increasing, and prediction of antimicrobial susceptibility based on sequence information could support targeted antimicrobial therapy in a clinical setting. Complete identification of insertion sequence (IS) elements carrying promoter sequences upstream of resistance genes is necessary for prediction of AMR. However, assemblies from short reads alone are often fractured due to repeat regions and the presence of multiple copies of identical IS elements. Identification of plasmids in clinical isolates can aid in the surveillance of the dissemination of AMR, and comprehensive sequence databases support microbiome and metagenomic studies. We tested several short-read, hybrid and long-lead assembly pipelines by assembling the type strain CCUG4856 (=ATCC25285=NCTC9343) with Illumina short reads and long reads generated by Oxford Nanopore Technologies (ONT) MinION sequencing. Hybrid assembly with Unicycler, using quality filtered Illumina reads and Filtlong filtered and Canu-corrected ONT reads, produced the assembly of highest quality. This approach was then applied to six clinical multidrug-resistant isolates and, with minimal manual finishing of chromosomal assemblies of three isolates, complete, circular assemblies of all isolates were produced. Eleven circular, putative plasmids were identified in the six assemblies, of which only three corresponded to a known cultured plasmid. Complete IS elements could be identified upstream of AMR genes; however, there was not complete correlation between the absence of IS elements and antimicrobial susceptibility. As our knowledge on factors that increase expression of resistance genes in the absence of IS elements is limited, further research is needed prior to implementing AMR prediction for from whole-genome sequencing.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000312
2019-11-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/mgen/5/11/mgen000312.html?itemId=/content/journal/mgen/10.1099/mgen.0.000312&mimeType=html&fmt=ahah

References

  1. Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 2007; 20:593–621 [View Article]
    [Google Scholar]
  2. Nagy E, Urbán E, Nord CE. on behalf of ESCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience. Clin Microbiol Infect 2011; 17:371–379 [View Article]
    [Google Scholar]
  3. Ferløv-Schwensen SA, Sydenham TV, Hansen KCM, Hoegh SV, Justesen US. Prevalence of antimicrobial resistance and the cfiA resistance gene in Danish Bacteroides fragilis group isolates since 1973. Int J Antimicrob Agents 2017; 50:552556 [View Article]
    [Google Scholar]
  4. Nagy E, Justesen US, Eitel Z, Urbán E. ESCMID Study Group on Anaerobic Infection Development of EUCAST disk diffusion method for susceptibility testing of the Bacteroides fragilis group isolates. Anaerobe 2015; 31:65–71 [View Article]
    [Google Scholar]
  5. Zankari E, Hasman H, Kaas RS, Seyfarth AM, Agersø Y et al. Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. J Antimicrob Chemother 2013; 68:771–777 [View Article]
    [Google Scholar]
  6. Stoesser N, Batty EM, Eyre DW, Morgan M, Wyllie DH et al. Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data. J Antimicrob Chemother 2013; 68:2234–2244 [View Article]
    [Google Scholar]
  7. Boolchandani M, D’Souza AW, Dantas G. Sequencing-Based methods and resources to study antimicrobial resistance. Nat Rev Genet 2019; 20:356–370
    [Google Scholar]
  8. Didelot X, Bowden R, Wilson DJ, Peto TEA, Crook DW. Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet 2012; 13:601–612 [View Article]
    [Google Scholar]
  9. Davies TJ, Stoesser N, Sheppard AE, Abuoun M, Fowler PW et al. Reconciling the potentially irreconcilable? Genotypic and phenotypic amoxicillin-clavulanate resistance in Escherichia coli . bioRxiv 2019; 511402:
    [Google Scholar]
  10. Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin Microbiol Infect 2017; 23:2–22 [View Article]
    [Google Scholar]
  11. Nagy E, Becker S, Sóki J, Urbán E, Kostrzewa M. Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroides fragilis strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Med Microbiol 2011; 60:1584–1590 [View Article]
    [Google Scholar]
  12. Rogers MB, Parker AC, Smith CJ. Cloning and characterization of the endogenous cephalosporinase gene, cepA, from Bacteroides fragilis reveals a new subgroup of Ambler class A beta-lactamases. Antimicrob Agents Chemother 1993; 37:2391–2400 [View Article]
    [Google Scholar]
  13. Rasmussen BA, Gluzman Y, Tally FP. Cloning and sequencing of the class B beta-lactamase gene (ccrA) from Bacteroides fragilis TAL3636. Antimicrob Agents Chemother 1990; 34:1590–1592 [View Article]
    [Google Scholar]
  14. Sydenham TV, Sóki J, Hasman H, Wang M, Justesen US et al. Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing. Anaerobe 2015; 31:59–64 [View Article]
    [Google Scholar]
  15. Ricker N, Qian H, Fulthorpe RR. The limitations of draft assemblies for understanding prokaryotic adaptation and evolution. Genomics 2012; 100:167–175 [View Article]
    [Google Scholar]
  16. Page AJ, De Silva N, Hunt M, Quail MA, Parkhill J et al. Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Microb Genomics 2016; 2:mgen.0.000083 [View Article]
    [Google Scholar]
  17. Schmid M, Frei D, Patrignani A, Schlapbach R, Frey JE et al. Pushing the limits of de novo genome assembly for complex prokaryotic genomes harboring very long, near identical repeats. Nucleic Acids Res 2018; 46:8953–8965 [View Article]
    [Google Scholar]
  18. Ring N, Abrahams JS, Jain M, Olsen H, Preston A et al. Resolving the complex Bordetella pertussis genome using barcoded nanopore sequencing. Microb Genomics 2018; 4:mgen.0.000234 [View Article]
    [Google Scholar]
  19. Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom 2017; 3:mgen.0.000132 [View Article]
    [Google Scholar]
  20. De Maio N, Shaw LP, Hubbard A, George S, Sanderson N et al. Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes. Microb Genom 2019; 5:mgen.0.000294
    [Google Scholar]
  21. Cerdeño-Tárraga AM, Patrick S, Crossman LC, Blakely G, Abratt V et al. Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 2005; 307:1463–1465 [View Article]
    [Google Scholar]
  22. Kuwahara T, Yamashita A, Hirakawa H, Nakayama H, Toh H et al. Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc Natl Acad Sci USA 2004; 101:14919–14924 [View Article]
    [Google Scholar]
  23. Patrick S, Blakely GW, Houston S, Moore J, Abratt VR et al. Twenty-eight divergent polysaccharide loci specifying within- and amongst-strain capsule diversity in three strains of Bacteroides fragilis . Microbiology 2010; 156:3255–3269 [View Article]
    [Google Scholar]
  24. Nikitina AS, Kharlampieva DD, Babenko VV, Shirokov DA, Vakhitova MT et al. Complete genome sequence of an enterotoxigenic Bacteroides fragilis clinical isolate. Genome Announc 2015; 3:e00450-15 [View Article]
    [Google Scholar]
  25. Risse J, Thomson M, Patrick S, Blakely G, Koutsovoulos G et al. A single chromosome assembly of Bacteroides fragilis strain BE1 from Illumina and MinION nanopore sequencing data. Gigascience 2015; 4:60 [View Article]
    [Google Scholar]
  26. Soki J. Bacteroides fragilis S14 genome sequencing and assembly (data accessed on NCBI RefSeq database accession GCF_001682215.1), https://www.ncbi.nlm.nih.gov/assembly/GCF_001682215.1/;; 2015
  27. Ho P-L, Yau C-Y, Wang Y, Chow K-H. Determination of the mutant-prevention concentration of imipenem for the two imipenem-susceptible Bacteroides fragilis strains, Q1F2 (cfiA-positive) and ATCC 25282 (cfiA-negative). Int J Antimicrob Agents 2018; 51:270–271 [View Article]
    [Google Scholar]
  28. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article]
    [Google Scholar]
  29. Desai A, Marwah VS, Yadav A, Jha V, Dhaygude K et al. Identification of optimum sequencing depth especially for de novo genome assembly of small genomes using next generation sequencing data. PLoS One 2013; 8:e60204 [View Article]
    [Google Scholar]
  30. Wick RR, Judd LM, Holt KE. Deepbinner: demultiplexing barcoded Oxford Nanopore reads with deep convolutional neural networks. PLoS Comput Biol 2018; 14:e1006583
    [Google Scholar]
  31. De Coster W, D'Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018; 34:2666–2669 [View Article]
    [Google Scholar]
  32. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article]
    [Google Scholar]
  33. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article]
    [Google Scholar]
  34. Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol 2018; 35:543–548 [View Article]
    [Google Scholar]
  35. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  36. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131
    [Google Scholar]
  37. Clark SC, Egan R, Frazier PI, Wang Z. ALE: a generic assembly likelihood evaluation framework for assessing the accuracy of genome and metagenome assemblies. Bioinformatics 2013; 29:435–443 [View Article]
    [Google Scholar]
  38. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 2015; 31:3350–3352 [View Article]
    [Google Scholar]
  39. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article]
    [Google Scholar]
  40. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [View Article]
    [Google Scholar]
  41. Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA et al. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol 2015; 16:294 [View Article]
    [Google Scholar]
  42. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article]
    [Google Scholar]
  43. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article]
    [Google Scholar]
  44. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. Card 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017; 45:D566–D573 [View Article]
    [Google Scholar]
  45. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–D36 [View Article]
    [Google Scholar]
  46. Galata V, Fehlmann T, Backes C, Keller A. PLSDB: a resource of complete bacterial plasmids. Nucleic Acids Res 2019; 47:D195–202 [View Article]
    [Google Scholar]
  47. Jørgensen TS, Xu Z, Hansen MA, Sørensen SJ, Hansen LH. Hundreds of circular novel plasmids and DNA elements identified in a rat cecum metamobilome. PLoS One 2014; 9:e87924 [View Article]
    [Google Scholar]
  48. Shah HN. The genus Bacteroides and related taxa. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H. (editors) The Prokaryotes: a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications New York, NY: Springer New York; 1992 pp 3593–3607
    [Google Scholar]
  49. Sóki J, Wareham DW, Rátkai C, Aduse-Opoku J, Urbán E et al. Prevalence, nucleotide sequence and expression studies of two proteins of a 5.6kb, class III, Bacteroides plasmid frequently found in clinical isolates from European countries. Plasmid 2010; 63:86–97 [View Article]
    [Google Scholar]
  50. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2016; 44:D7–D19 [View Article]
    [Google Scholar]
  51. Trinh S, Haggoud A, Reysset G, Sebald M. Plasmids pIP419 and pIP421 from Bacteroides: 5-nitroimidazole resistance genes and their upstream insertion sequence elements. Microbiology 1995; 141:927–935 [View Article]
    [Google Scholar]
  52. Haggoud A, Trinh S, Moumni M, Reysset G. Genetic analysis of the minimal replicon of plasmid pIP417 and comparison with the other encoding 5-nitroimidazole resistance plasmids from Bacteroides spp. Plasmid 1995; 34:132–143 [View Article]
    [Google Scholar]
  53. Sóki J, Gal M, Brazier JS, Rotimi VO, Urbán E et al. Molecular investigation of genetic elements contributing to metronidazole resistance in Bacteroides strains. J Antimicrob Chemother 2006; 57:212–220 [View Article]
    [Google Scholar]
  54. Hartmeyer GN, Sóki J, Nagy E, Justesen US. Multidrug-resistant Bacteroides fragilis group on the rise in Europe?. J Med Microbiol 2012; 61:1784–1788 [View Article]
    [Google Scholar]
  55. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010; 5:e11147 [View Article]
    [Google Scholar]
  56. Nishida H. Comparative analyses of base compositions, DNA sizes, and dinucleotide frequency profiles in archaeal and bacterial chromosomes and plasmids. Int J Evol Biol 2012; 2012:342482 [View Article]
    [Google Scholar]
  57. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article]
    [Google Scholar]
  58. Bayley DP, Rocha ER, Smith CJ. Analysis of cepA and other Bacteroides fragilis genes reveals a unique promoter structure. FEMS Microbiol Lett 2000; 193:149–154 [View Article]
    [Google Scholar]
  59. Lin Y, Yuan J, Kolmogorov M, Shen MW, Chaisson M et al. Assembly of long error-prone reads using de Bruijn graphs. Proc Natl Acad Sci USA 2016; 113:E8396–E8405 [View Article]
    [Google Scholar]
  60. Kamath GM, Shomorony I, Xia F, Courtade TA, Tse DN. Hinge: long-read assembly achieves optimal repeat resolution. Genome Res 2017; 27:747–756 [View Article]
    [Google Scholar]
  61. Payne A, Holmes N, Rakyan V, Loose M. BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files. Bioinformatics 2019; 35:2193–2198
    [Google Scholar]
  62. de Lannoy C, Risse J, de Ridder D. poreTally: run and publish de novo nanopore assembler benchmarks. Bioinformatics 2019; 35:2663–2664 [View Article]
    [Google Scholar]
  63. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article]
    [Google Scholar]
  64. Arredondo-Alonso S, Rogers MRC, Braat JC, Verschuuren TD, Top J et al. mlplasmids: a user-friendly tool to predict plasmid- and chromosome-derived sequences for single species. Microb Genom 2018; 4:mgen.0.000224 [View Article]
    [Google Scholar]
  65. Nguyen M, Vedantam G. Mobile genetic elements in the genus Bacteroides, and their mechanism(s) of dissemination. Mob Genet Elements 2011; 1:187–196 [View Article]
    [Google Scholar]
  66. Shkoporov AN, Khokhlova EV, Kulagina EV, Smeianov VV, Kuchmiy AA et al. Analysis of a novel 8.9kb cryptic plasmid from Bacteroides uniformis, its long-term stability and spread within human microbiota. Plasmid 2013; 69:146–159 [View Article]
    [Google Scholar]
  67. McNulty NP, Wu M, Erickson AR, Pan C, Erickson BK et al. Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol 2013; 11:e1001637 [View Article]
    [Google Scholar]
  68. Pierce JV, Bernstein HD. Genomic diversity of enterotoxigenic strains of Bacteroides fragilis . PLoS One 2016; 11:e0158171 [View Article]
    [Google Scholar]
  69. Husain F, Veeranagouda Y, Hsi J, Meggersee R, Abratt V et al. Two multidrug-resistant clinical isolates of Bacteroides fragilis carry a novel metronidazole resistance nim gene (nimJ). Antimicrob Agents Chemother 2013; 57:3767–3774 [View Article]
    [Google Scholar]
  70. Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. bioRxiv 2019; 530972:
    [Google Scholar]
  71. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 2016; 32:2103–2110 [View Article]
    [Google Scholar]
  72. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546
    [Google Scholar]
  73. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article]
    [Google Scholar]
  74. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  75. Antipov D, Korobeynikov A, McLean JS, Pevzner PA. hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics 2016; 32:1009–1015 [View Article]
    [Google Scholar]
  76. Souvorov A, Agarwala R, Lipman DJ. SKESA: strategic k-mer extension for scrupulous assemblies. Genome Biol 2018; 19:153 [View Article]
    [Google Scholar]
  77. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article]
    [Google Scholar]
  78. Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 2015; 12:733–735 [View Article]
    [Google Scholar]
  79. Vaser R, Sovic I, Nagarajan N, Sikic M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017; 27:737–746
    [Google Scholar]
  80. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article]
    [Google Scholar]
  81. Krumsiek J, Arnold R, Rattei T. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 2007; 23:1026–1028 [View Article]
    [Google Scholar]
  82. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics 2011; 27:1009–1010 [View Article]
    [Google Scholar]
  83. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [View Article]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000312
Loading
/content/journal/mgen/10.1099/mgen.0.000312
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error