1887

Abstract

is an opportunistic bacterium that causes hospital-acquired infections with a high mortality and morbidity, since there are strains resistant to virtually any kind of antibiotic. The chase to find novel strategies to fight against this microbe can be favoured by knowledge of the complete catalogue of genes of the species, and their relationship with the specific characteristics of different isolates. In this work, we performed a genomics analysis of almost 2500 strains. Two different groups of genomes were found based on the number of shared genes. One of these groups rarely has plasmids, and bears clustered regularly interspaced short palindromic repeat (CRISPR) sequences, in addition to CRISPR-associated genes ( genes) or restriction-modification system genes. This fact strongly supports the lack of plasmids. Furthermore, the scarce plasmids in this group also bear CRISPR sequences, and specifically contain genes involved in prokaryotic toxin–antitoxin systems that could either act as the still little known CRISPR type IV system or be the precursors of other novel CRISPR/Cas systems. In addition, a limited set of strains present a new gene, which may complement the other genes in inhibiting the entrance of new plasmids into the bacteria. Finally, this group has exclusive genes involved in biofilm formation, which would connect CRISPR systems to the biogenesis of these bacterial resistance structures.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000309
2019-10-18
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10.1099/mgen.0.000309/mgen000309.html?itemId=/content/journal/mgen/10.1099/mgen.0.000309&mimeType=html&fmt=ahah

References

  1. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018;18: 318– 327 [CrossRef]
    [Google Scholar]
  2. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 2008;21: 538– 582 [CrossRef]
    [Google Scholar]
  3. Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol 2018;16: 91– 102 [CrossRef]
    [Google Scholar]
  4. Cisneros JM, Reyes MJ, Pachón J, Becerril B, Caballero FJ et al. Bacteremia due to Acinetobacter baumannii: epidemiology, clinical findings, and prognostic features. Clin Infect Dis 1996;22: 1026– 1032 [CrossRef]
    [Google Scholar]
  5. Eveillard M, Kempf M, Belmonte O, Pailhoriès H, Joly-Guillou M-L. Reservoirs of Acinetobacter baumannii outside the hospital and potential involvement in emerging human community-acquired infections. Int J Infect Dis 2013;17: e802– e805 [CrossRef]
    [Google Scholar]
  6. Towner KJ. Acinetobacter: an old friend, but a new enemy. J Hosp Infect 2009;73: 355– 363 [CrossRef]
    [Google Scholar]
  7. McConnell MJ, Actis L, Pachón J. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev 2013;37: 130– 155 [CrossRef]
    [Google Scholar]
  8. Gaddy JA, Arivett BA, McConnell MJ, López-Rojas R, Pachón J et al. Role of acinetobactin-mediated iron acquisition functions in the interaction of Acinetobacter baumannii strain ATCC 19606T with human lung epithelial cells, Galleria mellonella caterpillars, and mice. Infect Immun 2012;80: 1015– 1024 [CrossRef]
    [Google Scholar]
  9. Salto IP, Torres Tejerizo G, Wibberg D, Pühler A, Schlüter A et al. Comparative genomic analysis of Acinetobacter spp. plasmids originating from clinical settings and environmental habitats. Sci Rep 2018;8: 7783 [CrossRef]
    [Google Scholar]
  10. Kitts PA, Church DM, Thibaud-Nissen F, Choi J, Hem V et al. Assembly: a resource for assembled genomes at NCBI. Nucleic Acids Res 2016;44: D73– D80 [CrossRef]
    [Google Scholar]
  11. Adams MD, Goglin K, Molyneaux N, Hujer KM, Lavender H et al. Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. J Bacteriol 2008;190: 8053– 8064 [CrossRef]
    [Google Scholar]
  12. Farrugia DN, Elbourne LDH, Hassan KA, Eijkelkamp BA, Tetu SG et al. The complete genome and phenome of a community-acquired Acinetobacter baumannii. PLoS One 2013;8: e58628 [CrossRef]
    [Google Scholar]
  13. Chan AP, Sutton G, DePew J, Krishnakumar R, Choi Y et al. A novel method of consensus pan-chromosome assembly and large-scale comparative analysis reveal the highly flexible pan-genome of Acinetobacter baumannii. Genome Biol 2015;16: 143 [CrossRef]
    [Google Scholar]
  14. Sahl JW, Johnson JK, Harris AD, Phillippy AM, Hsiao WW et al. Genomic comparison of multi-drug resistant invasive and colonizing Acinetobacter baumannii isolated from diverse human body sites reveals genomic plasticity. BMC Genomics 2011;12: 291 [CrossRef]
    [Google Scholar]
  15. Imperi F, Antunes LCS, Blom J, Villa L, Iacono M et al. The genomics of Acinetobacter baumannii: insights into genome plasticity, antimicrobial resistance and pathogenicity. IUBMB Life 2011;63: 1068– 1074 [CrossRef]
    [Google Scholar]
  16. Antunes LCS, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis 2014;71: 292– 301 [CrossRef]
    [Google Scholar]
  17. Karah N, Samuelsen Ø, Zarrilli R, Sahl JW, Wai SN et al. CRISPR-Cas subtype I-Fb in Acinetobacter baumannii: evolution and utilization for strain subtyping. PLoS One 2015;10: e0118205 [CrossRef]
    [Google Scholar]
  18. Koonin EV, Makarova KS. Mobile genetic elements and evolution of CRISPR-Cas systems: all the way there and back. Genome Biol Evol 2017;9: 2812– 2825 [CrossRef]
    [Google Scholar]
  19. Koonin EV, Makarova KS. Origins and evolution of CRISPR-Cas systems. Philos Trans R Soc Lond B Biol Sci 2019;374: 20180087 [CrossRef]
    [Google Scholar]
  20. Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol 2016;34: 933– 941 [CrossRef]
    [Google Scholar]
  21. Louwen R, Staals RHJ, Endtz HP, van Baarlen P, van der Oost J. The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol Mol Biol Rev 2014;78: 74– 88 [CrossRef]
    [Google Scholar]
  22. Barrett T, Clark K, Gevorgyan R, Gorelenkov V, Gribov E et al. BioProject and BioSample databases at NCBI: facilitating capture and organization of metadata. Nucleic Acids Res 2012;40: D57– D63 [CrossRef]
    [Google Scholar]
  23. Nemec A, Krizova L, Maixnerova M, van der Reijden TJK, Deschaght P et al. Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Res Microbiol 2011;162: 393– 404 [CrossRef]
    [Google Scholar]
  24. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30: 2068– 2069 [CrossRef]
    [Google Scholar]
  25. Casimiro-Soriguer CS, Muñoz-Mérida A, Pérez-Pulido AJ, Pulido P. Sma3s: a universal tool for easy functional annotation of proteomes and transcriptomes. Proteomics 2017;17: 1700071 [CrossRef]
    [Google Scholar]
  26. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 2017;45: D200– D203 [CrossRef]
    [Google Scholar]
  27. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25: 3389– 3402 [CrossRef]
    [Google Scholar]
  28. Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 2013;29: 2933– 2935 [CrossRef]
    [Google Scholar]
  29. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30: 772– 780 [CrossRef]
    [Google Scholar]
  30. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25: 1972– 1973 [CrossRef]
    [Google Scholar]
  31. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30: 1312– 1313 [CrossRef]
    [Google Scholar]
  32. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016;8: 12– 24
    [Google Scholar]
  33. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015;31: 3691– 3693 [CrossRef]
    [Google Scholar]
  34. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010;5: e9490 [CrossRef]
    [Google Scholar]
  35. Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 2018;34: 292– 293
    [Google Scholar]
  36. Alexa A, Rahnenführer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 2006;22: 1600– 1607 [CrossRef]
    [Google Scholar]
  37. Muñoz-Mérida A, Viguera E, Claros MG, Trelles O, Pérez-Pulido AJ. Sma3s: a three-step modular annotator for large sequence datasets. DNA Res 2014;21: 341– 353 [CrossRef]
    [Google Scholar]
  38. Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 2018;46: W246– W251 [CrossRef]
    [Google Scholar]
  39. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012;28: 3150– 3152 [CrossRef]
    [Google Scholar]
  40. Robertson J, Nash JHE. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb Genomics 2018;4: mgen.0.000206 [CrossRef]
    [Google Scholar]
  41. Sahl JW, Gillece JD, Schupp JM, Waddell VG, Driebe EM et al. Evolution of a pathogen: a comparative genomics analysis identifies a genetic pathway to pathogenesis in Acinetobacter. PLoS One 2013;8: e54287 [CrossRef]
    [Google Scholar]
  42. Bassett CL, Kushner SR. Exonucleases I, III, and V are required for stability of ColE1-related plasmids in Escherichia coli. J Bacteriol 1984;157: 661– 664
    [Google Scholar]
  43. Tomaras AP, Dorsey CW, Edelmann RE, Actis LA. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology 2003;149: 3473– 3484 [CrossRef]
    [Google Scholar]
  44. Doughty S, Sloan J, Bennett-Wood V, Robertson M, Robins-Browne RM et al. Identification of a novel fimbrial gene cluster related to long polar fimbriae in locus of enterocyte effacement-negative strains of enterohemorrhagic Escherichia coli. Infect Immun 2002;70: 6761– 6769 [CrossRef]
    [Google Scholar]
  45. Makarova KS, Anantharaman V, Grishin NV, Koonin EV, Aravind L. Carf and WYL domains: ligand-binding regulators of prokaryotic defense systems. Front Genet 2014;5: 102 [CrossRef]
    [Google Scholar]
  46. Jurenaite M, Markuckas A, Suziedeliene E. Identification and characterization of type II toxin-antitoxin systems in the opportunistic pathogen Acinetobacter baumannii. J Bacteriol 2013;195: 3165– 3172 [CrossRef]
    [Google Scholar]
  47. Pandey DP, Gerdes K. Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 2005;33: 966– 976 [CrossRef]
    [Google Scholar]
  48. Makarova KS, Aravind L, Wolf YI, Koonin EV. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol Direct 2011;6: 38 [CrossRef]
    [Google Scholar]
  49. Cook GM, Robson JR, Frampton RA, McKenzie J, Przybilski R et al. Ribonucleases in bacterial toxin-antitoxin systems. Biochim Biophys Acta 2013;1829: 523– 531
    [Google Scholar]
  50. Makarova KS, Wolf YI, Koonin EV. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct 2009;4: 19 [CrossRef]
    [Google Scholar]
  51. Gweon HS, Bailey MJ, Read DS. Assessment of the bimodality in the distribution of bacterial genome sizes. ISME J 2017;11: 821– 824 [CrossRef]
    [Google Scholar]
  52. Sistla S, Rao DN. S-Adenosyl-L-methionine-dependent restriction enzymes. Crit Rev Biochem Mol Biol 2004;39: 1– 19 [CrossRef]
    [Google Scholar]
  53. Makarova KS, Wolf YI, Koonin EV. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res 2013;41: 4360– 4377 [CrossRef]
    [Google Scholar]
  54. McDonald ND, Regmi A, Morreale DP, Borowski JD, Boyd EF. CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species. BMC Genomics 2019;20: [CrossRef]
    [Google Scholar]
  55. Lobato-Márquez D, Díaz-Orejas R, García-Del Portillo F. Toxin-antitoxins and bacterial virulence. FEMS Microbiol Rev 2016;40: 592– 609 [CrossRef]
    [Google Scholar]
  56. Maikova A, Peltier J, Boudry P, Hajnsdorf E, Kint N et al. Discovery of new type I toxin-antitoxin systems adjacent to CRISPR arrays in Clostridium difficile. Nucleic Acids Res 2018;46: 4733– 4751 [CrossRef]
    [Google Scholar]
  57. Tong Z, Du Y, Ling J, Huang L, Ma J. Relevance of the clustered regularly interspaced short palindromic repeats of Enterococcus faecalis strains isolated from retreatment root canals on periapical lesions, resistance to irrigants and biofilms. Exp Ther Med 2017;14: 5491– 5496 [CrossRef]
    [Google Scholar]
  58. Tang B, Gong T, Zhou X, Lu M, Zeng J et al. Deletion of Cas3 gene in Streptococcus mutans affects biofilm formation and increases fluoride sensitivity. Arch Oral Biol 2019;99: 190– 197 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000309
Loading
/content/journal/mgen/10.1099/mgen.0.000309
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error