1887

Abstract

Penicillin-non-susceptible (PNSP) were first detected in the 1960s, and are now common worldwide, predominantly through the international spread of a limited number of strains. Extant PNSP are characterized by mosaic , and genes generated by interspecies recombinations, with the extent of these alterations determining the range and concentrations of β-lactams to which the genotype is non-susceptible. The complexity of the genetics underlying these phenotypes has been the subject of both molecular microbiology and genome-wide association and epistasis analyses. Such studies can aid our understanding of PNSP evolution and help improve the already highly-performing bioinformatic methods capable of identifying PNSP from genomic surveillance data.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000305
2019-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/mgen/5/10/mgen000305.html?itemId=/content/journal/mgen/10.1099/mgen.0.000305&mimeType=html&fmt=ahah

References

  1. Arason VA, Kristinsson KG, Sigurdsson JA, Stefánsdóttir G, Mölstad S et al. Do antimicrobials increase the carriage rate of penicillin resistant pneumococci in children? Cross sectional prevalence study. BMJ 1996; 313:387–391 [View Article]
    [Google Scholar]
  2. Guillemot D, Carbon C, Balkau B, Geslin P, Lecoeur H et al. Low dosage and long treatment duration of β-lactam: risk factors for carriage of penicillin-resistant Streptococcus pneumoniae . JAMA 1998; 279:365–370 [View Article]
    [Google Scholar]
  3. Melander E, Mölstad S, Persson K, Hansson HB, Söderström M et al. Previous antibiotic consumption and other risk factors for carriage of penicillin-resistant Streptococcus pneumoniae in children. Eur J Clin Microbiol Infect Dis 1998; 17:834–838 [View Article]
    [Google Scholar]
  4. Regev-Yochay G, Raz M, Shainberg B, Dagan R, Varon M et al. Independent risk factors for carriage of penicillin-non-susceptible Streptococcus pneumoniae . Scand J Infect Dis 2003; 35:219–222 [View Article]
    [Google Scholar]
  5. Nasrin D, Collignon PJ, Roberts L, Wilson EJ, Pilotto LS et al. Effect of beta lactam antibiotic use in children on pneumococcal resistance to penicillin: prospective cohort study. BMJ 2002; 324:28 [View Article]
    [Google Scholar]
  6. Lipsitch M. Measuring and interpreting associations between antibiotic use and penicillin resistance in Streptococcus pneumoniae . Clin Infect Dis 2001; 32:1044–1054 [View Article]
    [Google Scholar]
  7. Goossens H, Ferech M, Vander Stichele R, Elseviers M. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. The Lancet 2005; 365:579–587 [View Article]
    [Google Scholar]
  8. Croucher NJ, Løchen A, Bentley SD. Pneumococcal vaccines: host interactions, population dynamics, and design principles. Annu Rev Microbiol 2018; 72:521–549 [View Article]
    [Google Scholar]
  9. Pilishvili T, Lexau C, Farley MM, Hadler J, Harrison LH et al. Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J Infect Dis 2010; 201:32–41 [View Article]
    [Google Scholar]
  10. Casey JR, Adlowitz DG, Pichichero ME. New patterns in the otopathogens causing acute otitis media six to eight years after introduction of pneumococcal conjugate vaccine. Pediatr Infect Dis J 2010; 29:304–309 [View Article]
    [Google Scholar]
  11. Gonzales R, Malone DC, Maselli JH, Sande MA. Excessive antibiotic use for acute respiratory infections in the United States. Clin Infect Dis 2001; 33:757–762 [View Article]
    [Google Scholar]
  12. Vergison A, Dagan R, Arguedas A, Bonhoeffer J, Cohen R et al. Otitis media and its consequences: beyond the earache. Lancet Infect Dis 2010; 10:195–203 [View Article]
    [Google Scholar]
  13. Tedijanto C, Olesen SW, Grad YH, Lipsitch M. Estimating the proportion of bystander selection for antibiotic resistance among potentially pathogenic bacterial flora. Proc Natl Acad Sci USA 2018; 115:E11988–E11995 [View Article]
    [Google Scholar]
  14. Arason VA, Sigurdsson JA, Erlendsdottir H, Gudmundsson S, Kristinsson KG. The role of antimicrobial use in the epidemiology of resistant pneumococci: a 10-year follow up. Microb Drug Resist 2006; 12:169–176 [View Article]
    [Google Scholar]
  15. Mölstad S, Erntell M, Hanberger H, Melander E, Norman C et al. Sustained reduction of antibiotic use and low bacterial resistance: 10-year follow-up of the Swedish Strama programme. Lancet Infect Dis 2008; 8:125–132 [View Article]
    [Google Scholar]
  16. Belongia EA, Sullivan BJ, Chyou PH, Madagame E, Reed KD et al. A community intervention trial to promote judicious antibiotic use and reduce penicillin-resistant Streptococcus pneumoniae carriage in children. Pediatrics 2001; 108:575–583 [View Article]
    [Google Scholar]
  17. Barkai G, Greenberg D, Givon-Lavi N, Dreifuss E, Vardy D et al. Community prescribing and resistant Streptococcus pneumoniae . Emerg Infect Dis 2005; 11:829–837 [View Article]
    [Google Scholar]
  18. Centers for Disease Control and Prevention Antibiotic Resistance Threats in the United States, 2013 Atlanta, GA: Centers for Disease Control and Prevention; 2013
    [Google Scholar]
  19. Harboe ZB, Thomsen RW, Riis A, Valentiner-Branth P, Christensen JJ et al. Pneumococcal serotypes and mortality following invasive pneumococcal disease: a population-based cohort study. PLoS Med 2009; 6:e1000081 [View Article]
    [Google Scholar]
  20. Tleyjeh IM, Tlaygeh HM, Hejal R, Montori VM, Baddour LM. The impact of penicillin resistance on short-term mortality in hospitalized adults with pneumococcal pneumonia: a systematic review and meta-analysis. Clin Infect Dis 2006; 42:788–797 [View Article]
    [Google Scholar]
  21. Navarro-Torné A, Dias JG, Hruba F, Lopalco PL, Pastore-Celentano L et al. Risk factors for death from invasive pneumococcal disease, Europe, 2010. Emerg Infect Dis 2015; 21:417–425 [View Article]
    [Google Scholar]
  22. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European economic area in 2015: a population-level modelling analysis. Lancet Infect Dis 2019; 19:56–66 [View Article]
    [Google Scholar]
  23. Weinstein MP, Klugman KP, Jones RN. Rationale for revised penicillin susceptibility breakpoints versus Streptococcus pneumoniae: coping with antimicrobial susceptibility in an era of resistance. Clin Infect Dis 2009; 48:1596–1600 [View Article]
    [Google Scholar]
  24. Kislak JW, Razavi LM, Daly AK, Finland M. Susceptibility of pneumococci to nine antibiotics. Am J Med Sci 1965; 250:261–268 [View Article]
    [Google Scholar]
  25. Jacobs MR, Mithal Y, Robins-Browne RM, Gaspar MN, Koornhof HJ. Antimicrobial susceptibility testing of pneumococci: determination of Kirby-Bauer breakpoints for penicillin G, erythromycin, clindamycin, tetracycline, chloramphenicol, and rifampin. Antimicrob Agents Chemother 1979; 16:190–197 [View Article]
    [Google Scholar]
  26. Zighelboim S, Tomasz A. Penicillin-binding proteins of multiply antibiotic-resistant South African strains of Streptococcus pneumoniae . Antimicrob Agents Chemother 1980; 17:434–442 [View Article]
    [Google Scholar]
  27. Dowson CG, Hutchison A, Brannigan JA, George RC, Hansman D et al. Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae . Proc Natl Acad Sci USA 1989; 86:8842–8846 [View Article]
    [Google Scholar]
  28. Laible G, Spratt BG, Hakenbeck R. Interspecies recombinational events during the evolution of altered PBP 2x genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae . Mol Microbiol 1991; 5:1993–2002 [View Article]
    [Google Scholar]
  29. Dowson CG, Coffey TJ, Kell C, Whiley RA. Evolution of penicillin resistance in Streptococcus pneumoniae; the role of Streptococcus mitis in the formation of a low affinity PBP2B in S. pneumoniae . Mol Microbiol 1993; 9:635–643 [View Article]
    [Google Scholar]
  30. Dowson CG, Barcus V, King S, Pickerill P, Whatmore A et al. Horizontal gene transfer and the evolution of resistance and virulence determinants in Streptococcus . J Appl Microbiol 1997; 83:42S–51S [View Article]
    [Google Scholar]
  31. Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol Rev 2008; 32:361–385 [View Article]
    [Google Scholar]
  32. du Plessis M, Bingen E, Klugman KP. Analysis of penicillin-binding protein genes of clinical isolates of Streptococcus pneumoniae with reduced susceptibility to amoxicillin. Antimicrob Agents Chemother 2002; 46:2349–2357 [View Article]
    [Google Scholar]
  33. Muñoz R, Dowson CG, Daniels M, Coffey TJ, Martin C et al. Genetics of resistance to third-generation cephalosporins in clinical isolates of Streptococcus pneumoniae . Mol Microbiol 1992; 6:2461–2465 [View Article]
    [Google Scholar]
  34. Philippe J, Gallet B, Morlot C, Denapaite D, Hakenbeck R et al. Mechanism of β-lactam action in Streptococcus pneumoniae: the piperacillin paradox. Antimicrob Agents Chemother 2015; 59:609–621 [View Article]
    [Google Scholar]
  35. Grebe T, Hakenbeck R. Penicillin-binding proteins 2B and 2x of Streptococcus pneumoniae are primary resistance determinants for different classes of beta-lactam antibiotics. Antimicrob Agents Chemother 1996; 40:829–834 [View Article]
    [Google Scholar]
  36. Smith AM, Klugman KP. Alterations in MurM, a cell wall muropeptide branching enzyme, increase high-level penicillin and cephalosporin resistance in Streptococcus pneumoniae . Antimicrob Agents Chemother 2001; 45:2393–2396 [View Article]
    [Google Scholar]
  37. Filipe SR, Severina E, Tomasz A. The murMN operon: a functional link between antibiotic resistance and antibiotic tolerance in Streptococcus pneumoniae . Proc Natl Acad Sci USA 2002; 99:1550–1555 [View Article]
    [Google Scholar]
  38. Coffey TJ, Dowson CG, Daniels M, Zhou J, Martin C et al. Horizontal transfer of multiple penicillin-binding protein genes, and capsular biosynthetic genes, in natural populations of Streptococcus pneumoniae . Mol Microbiol 1991; 5:2255–2260 [View Article]
    [Google Scholar]
  39. Chewapreecha C, Marttinen P, Croucher NJ, Salter SJ, Harris SR et al. Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. PLoS Genet 2014; 10:e1004547 [View Article]
    [Google Scholar]
  40. Li Y, Metcalf BJ, Chochua S, Li Z, Gertz RE et al. Penicillin-binding protein transpeptidase signatures for tracking and predicting β-lactam resistance levels in Streptococcus pneumoniae . mBio 2016; 7:e00756-16 [View Article]
    [Google Scholar]
  41. Skwark MJ, Croucher NJ, Puranen S, Chewapreecha C, Pesonen M et al. Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis. PLoS Genet 2017; 13:e1006508 [View Article]
    [Google Scholar]
  42. Puranen S, Pesonen M, Pensar J, Xu YY, Lees JA et al. SuperDCA for genome-wide epistasis analysis. Microb Genomics 2018; 4:e000184 [View Article]
    [Google Scholar]
  43. Pensar J, Puranen S, Arnold B, MacAlasdair N, Kuronen J et al. Genome-wide epistasis and co-selection study using mutual information. Nucleic Acids Res 2019; 47:e112 [View Article]
    [Google Scholar]
  44. Albarracín Orio AG, Piñas GE, Cortes PR, Cian MB, Echenique J. Compensatory evolution of pbp mutations restores the fitness cost imposed by β-lactam resistance in Streptococcus pneumoniae . PLoS Pathog 2011; 7:e1002000 [View Article]
    [Google Scholar]
  45. Croucher NJ, Finkelstein JA, Pelton SI, Mitchell PK, Lee GM et al. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat Genet 2013; 45:656–663 [View Article]
    [Google Scholar]
  46. McGee L, McDougal L, Zhou J, Spratt BG, Tenover FC et al. Nomenclature of major antimicrobial-resistant clones of Streptococcus pneumoniae defined by the pneumococcal molecular epidemiology network. J Clin Microbiol 2001; 39:2565–2571 [View Article]
    [Google Scholar]
  47. Klugman KP. The successful clone: the vector of dissemination of resistance in Streptococcus pneumoniae . J Antimicrob Chemother 2002; 50 (Suppl. 2):1–5 [View Article]
    [Google Scholar]
  48. Gladstone RA, Lo SW, Lees JA, Croucher NJ, van Tonder AJ et al. International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact. EBioMedicine 2019; 43:338–346 [View Article]
    [Google Scholar]
  49. Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW et al. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res 2019; 29:304–316 [View Article]
    [Google Scholar]
  50. Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J et al. Rapid pneumococcal evolution in response to clinical interventions. Science 2011; 331:430–434 [View Article]
    [Google Scholar]
  51. Croucher NJ, Chewapreecha C, Hanage WP, Harris SR, McGee L et al. Evidence for soft selective sweeps in the evolution of pneumococcal multidrug resistance and vaccine escape. Genome Biol Evol 2014; 6:1589–1602 [View Article]
    [Google Scholar]
  52. Croucher NJ, Hanage WP, Harris SR, McGee L, van der Linden M et al. Variable recombination dynamics during the emergence, transmission and 'disarming' of a multidrug-resistant pneumococcal clone. BMC Biol 2014; 12:49 [View Article]
    [Google Scholar]
  53. Wyres KL, Lambertsen LM, Croucher NJ, McGee L, von Gottberg A et al. The multidrug-resistant PMEN1 pneumococcus is a paradigm for genetic success. Genome Biol 2012; 13:R103 [View Article]
    [Google Scholar]
  54. Mostowy R, Croucher NJ, Hanage WP, Harris SR, Bentley S et al. Heterogeneity in the frequency and characteristics of homologous recombination in pneumococcal evolution. PLoS Genet 2014; 10:e1004300 [View Article]
    [Google Scholar]
  55. Chewapreecha C, Harris SR, Croucher NJ, Turner C, Marttinen P et al. Dense genomic sampling identifies highways of pneumococcal recombination. Nat Genet 2014; 46:305–309 [View Article]
    [Google Scholar]
  56. Trzciński K, Thompson CM, Lipsitch M. Single-step capsular transformation and acquisition of penicillin resistance in Streptococcus pneumoniae . J Bacteriol 2004; 186:3447–3452 [View Article]
    [Google Scholar]
  57. Hausdorff WP, Feikin DR, Klugman KP. Epidemiological differences among pneumococcal serotypes. Lancet Infect Dis 2005; 5:83–93 [View Article]
    [Google Scholar]
  58. Kyaw MH, Lynfield R, Schaffner W, Craig AS, Hadler J et al. Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae . N Engl J Med 2006; 354:1455–1463 [View Article]
    [Google Scholar]
  59. Wroe PC, Lee GM, Finkelstein JA, Pelton SI, Hanage WP et al. Pneumococcal carriage and antibiotic resistance in young children before 13-valent conjugate vaccine. Pediatr Infect Dis J 2012; 31:249–254 [View Article]
    [Google Scholar]
  60. Moore MR, Hyde TB, Hennessy TW, Parks DJ, Reasonover AL et al. Impact of a conjugate vaccine on community-wide carriage of nonsusceptible Streptococcus pneumoniae in Alaska. J Infect Dis 2004; 190:2031–2038 [View Article]
    [Google Scholar]
  61. Reinert R, Jacobs MR, Kaplan SL. Pneumococcal disease caused by serotype 19A: review of the literature and implications for future vaccine development. Vaccine 2010; 28:4249–4259 [View Article]
    [Google Scholar]
  62. Kim L, McGee L, Tomczyk S, Beall B. Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in pre- and post-conjugate vaccine eras: A United States perspective. Clin Microbiol Rev 2016; 29:525–552 [View Article]
    [Google Scholar]
  63. Horácio AN, Silva-Costa C, Lopes E, Ramirez M, Melo-Cristino J et al. Conjugate vaccine serotypes persist as major causes of non-invasive pneumococcal pneumonia in Portugal despite declines in serotypes 3 and 19A (2012-2015). PLoS One 2018; 13:e0206912 [View Article]
    [Google Scholar]
  64. Kandasamy R, Voysey M, Collins S, Berbers G, Robinson H et al. Persistent circulation of vaccine serotypes and serotype replacement after five years of UK infant immunisation with PCV13. J Infect Dis 2019jiz178 [View Article]
    [Google Scholar]
  65. Lo SW, Gladstone RA, van Tonder AJ, Lees JA, du Plessis M et al. Pneumococcal lineages associated with serotype replacement and antibiotic resistance in childhood invasive pneumococcal disease in the post-PCV13 era: an international whole-genome sequencing study. Lancet Infect Dis 2019; 19:759–769 [View Article]
    [Google Scholar]
  66. Càmara J, Cubero M, Martín-Galiano AJ, García E, Grau I et al. Evolution of the β-lactam-resistant Streptococcus pneumoniae PMEN3 clone over a 30 year period in Barcelona, Spain. J Antimicrob Chemother 2018; 73:2941–2951 [View Article]
    [Google Scholar]
  67. Chochua S, Metcalf BJ, Li Z, Walker H, Tran T et al. Invasive serotype 35B pneumococci including an expanding serotype switch lineage, United States, 2015-2016. Emerg Infect Dis 2017; 23:922–930 [View Article]
    [Google Scholar]
  68. Ouldali N, Levy C, Varon E, Bonacorsi S, Béchet S et al. Incidence of paediatric pneumococcal meningitis and emergence of new serotypes: a time-series analysis of a 16-year French national survey. Lancet Infect Dis 2018; 18:983–991 [View Article]
    [Google Scholar]
  69. Kapatai G, Sheppard CL, Al-Shahib A, Litt DJ, Underwood AP et al. Whole genome sequencing of Streptococcus pneumoniae: development, evaluation and verification of targets for serogroup and serotype prediction using an automated pipeline. PeerJ 2016; 4:e2477 [View Article]
    [Google Scholar]
  70. Epping L, van Tonder AJ, Gladstone RA, Bentley SD, Page AJ et al. SeroBA: rapid high-throughput serotyping of Streptococcus pneumoniae from whole genome sequence data. Microb Genomics 2018; 4:mgen.0.000186
    [Google Scholar]
  71. Metcalf BJ, Chochua S, Gertz RE, Li Z, Walker H et al. Using whole genome sequencing to identify resistance determinants and predict antimicrobial resistance phenotypes for year 2015 invasive pneumococcal disease isolates recovered in the United States. Clin Microbiol Infect 2016; 22:1002.e1–1002.e8 [View Article]
    [Google Scholar]
  72. Metcalf BJ, Gertz RE, Gladstone RA, Walker H, Sherwood LK et al. Strain features and distributions in pneumococci from children with invasive disease before and after 13-valent conjugate vaccine implementation in the USA. Clin Microbiol Infect 2016; 22:60.e9–60.e29 [View Article]
    [Google Scholar]
  73. Li Y, Metcalf BJ, Chochua S, Li Z, Gertz RE et al. Validation of β-lactam minimum inhibitory concentration predictions for pneumococcal isolates with newly encountered penicillin binding protein (PBP) sequences. BMC Genomics 2017; 18:621 [View Article]
    [Google Scholar]
  74. Corander J, Fraser C, Gutmann MU, Arnold B, Hanage WP et al. Frequency-dependent selection in vaccine-associated pneumococcal population dynamics. Nat Ecol Evol 2017; 1:1950–1960 [View Article]
    [Google Scholar]
  75. Hussain M, Melegaro A, Pebody RG, George R, Edmunds WJ et al. A longitudinal household study of Streptococcus pneumoniae nasopharyngeal carriage in a UK setting. Epidemiol Infect 2005; 133:891–898 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000305
Loading
/content/journal/mgen/10.1099/mgen.0.000305
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error