1887

Abstract

is a Gram-negative bacterium capable of causing gastrointestinal infection and is closely related to the highly virulent plague bacillus . Infections by both species are currently treatable with antibiotics such as ciprofloxacin, a quinolone-class drug of major clinical importance in the treatment of many other infections. Our current understanding of the mechanism of action of ciprofloxacin is that it inhibits DNA replication by targeting DNA gyrase, and that resistance is primarily due to mutation of this target site, along with generic efflux and detoxification strategies. We utilized transposon-directed insertion site sequencing (TraDIS or TnSeq) to identify the non-essential chromosomal genes in that are required to tolerate sub-lethal concentrations of ciprofloxacin . As well as highlighting recognized antibiotic resistance genes, we provide evidence that multiple genes involved in regulating DNA replication and repair are central in enabling to tolerate the antibiotic, including DksA (yptb0734), a regulator of RNA polymerase, and Hda (yptb2792), an inhibitor of DNA replication initiation. We furthermore demonstrate that even at sub-lethal concentrations, ciprofloxacin causes severe cell-wall stress, requiring lipopolysaccharide lipid A, O-antigen and core biosynthesis genes to resist the sub-lethal effects of the antibiotic. It is evident that coping with the consequence(s) of antibiotic-induced stress requires the contribution of scores of genes that are not exclusively engaged in drug resistance.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000304
2019-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/5/11/mgen000304.html?itemId=/content/journal/mgen/10.1099/mgen.0.000304&mimeType=html&fmt=ahah

References

  1. Gossman WG, Bhimji SS. Yersinia, pseudotuberculosis. StatPearls. Treasure Island 2018
    [Google Scholar]
  2. Ostroff SM, Kapperud G, Lassen J, Aasen S, Tauxe RV. Clinical features of sporadic Yersinia enterocolitica infections in Norway. J Infect Dis 1992; 166:812–817 [View Article]
    [Google Scholar]
  3. Sato K, Ouchi K, Komazawa M. Ampicillin vs. placebo for Yersinia pseudotuberculosis infection in children. Pediatr Infect Dis J 1988; 7:686–688 [View Article]
    [Google Scholar]
  4. Amphlett A. Far East Scarlet-Like fever: a review of the epidemiology, symptomatology, and role of superantigenic toxin: Yersinia pseudotuberculosis-derived mitogen a. Open Forum Infect Dis 2016; 3:ofv202 [View Article]
    [Google Scholar]
  5. Chain PSG, Carniel E, Larimer FW, Lamerdin J, Stoutland PO et al. Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis . Proc Natl Acad Sci USA 2004; 101:13826–13831 [View Article]
    [Google Scholar]
  6. Layton RC, Mega W, McDonald JD, Brasel TL, Barr EB et al. Levofloxacin cures experimental pneumonic plague in African green monkeys. PLoS Negl Trop Dis 2011; 5:e959 [View Article]
    [Google Scholar]
  7. Ljungberg P, Valtonen M, Harjola VP, Kaukoranta-Tolvanen SS, Vaara M. Report of four cases of Yersinia pseudotuberculosis septicemia and a literature review. Eur J Clin Microbiol Infect Dis 1995; 14:804–810 [View Article]
    [Google Scholar]
  8. Van Zonneveld M, Droogh JM, Fieren MWJA, Gyssens IC, Van Gelder T et al. Yersinia pseudotuberculosis bacteraemia in a kidney transplant patient. Nephrol Dial Transplant 2002; 17:2252–2254 [View Article]
    [Google Scholar]
  9. Cabanel N, Galimand M, Bouchier C, Chesnokova M, Klimov V et al. Molecular bases for multidrug resistance in Yersinia pseudotuberculosis . Int J Med Microbiol 2017; 307:371–381 [View Article]
    [Google Scholar]
  10. Welch TJ, Fricke WF, McDermott PF, White DG, Rosso M-L et al. Multiple antimicrobial resistance in plague: an emerging public health risk. PLoS One 2007; 2:e309 [View Article]
    [Google Scholar]
  11. Lindler LE, Fan W, Jahan N. Detection of ciprofloxacin-resistant Yersinia pestis by fluorogenic PCR using the LightCycler. J Clin Microbiol 2001; 39:3649–3655 [View Article]
    [Google Scholar]
  12. Hartog E, Ben-Shalom L, Shachar D, Matthews KR, Yaron S et al. Regulation of marA, soxS, rob, acrAB and micF in Salmonella enterica serovar Typhimurium. Microbiol Immunol 2008; 52:565–574 [View Article]
    [Google Scholar]
  13. Lister IM, Mecsas J, Levy SB. Effect of MarA-like proteins on antibiotic resistance and virulence in Yersinia pestis. Infect Immun 2010; 78:364–371 [View Article]
    [Google Scholar]
  14. Gallagher LA, Shendure J, Manoil C. Genome-Scale identification of resistance functions in pseudomonas aeruginosa using Tn-seq. mBio 2011; 2:e00315–10 [View Article]
    [Google Scholar]
  15. Xu W, DeJesus MA, Rücker N, Engelhart CA, Wright MG et al. Chemical genetic interaction profiling reveals determinants of intrinsic antibiotic resistance in Mycobacterium tuberculosis . Antimicrob Agents Chemother 2017; 61: [View Article]
    [Google Scholar]
  16. Hood MI, Becker KW, Roux CM, Dunman PM, Skaar EP. Genetic determinants of intrinsic colistin tolerance in Acinetobacter baumannii . Infect Immun 2013; 81:542–551 [View Article]
    [Google Scholar]
  17. Jana B, Cain AK, Doerrler WT, Boinett CJ, Fookes MC et al. The secondary resistome of multidrug-resistant klebsiella pneumoniae. Sci Rep 2017; 7:42483 [View Article]
    [Google Scholar]
  18. Willcocks SJ, Stabler RA, Atkins HS, Oyston PF, Wren BW. High-Throughput analysis of Yersinia pseudotuberculosis gene essentiality in optimised in vitro conditions, and implications for the speciation of Yersinia pestis. BMC Microbiol 2018; 18:46 [View Article]
    [Google Scholar]
  19. Wunderink HF, Oostvogel PM, Frénay IHME, Notermans DW, Fruth A et al. Difficulties in diagnosing terminal ileitis due to Yersinia pseudotuberculosis . Eur J Clin Microbiol Infect Dis 2014; 33:197–200 [View Article]
    [Google Scholar]
  20. Eckert SE, Dziva F, Chaudhuri RR, Langridge GC, Turner DJ et al. Retrospective application of transposon-directed insertion site sequencing to a library of signature-tagged mini-Tn5Km2 mutants of Escherichia coli O157:H7 screened in cattle. J Bacteriol 2011; 193:1771–1776 [View Article]
    [Google Scholar]
  21. DeJesus MA, Ioerger TR. Normalization of transposon-mutant library sequencing datasets to improve identification of conditionally essential genes. J Bioinform Comput Biol 2016; 14:1642004 [View Article]
    [Google Scholar]
  22. DeJesus MA, Ambadipudi C, Baker R, Sassetti C, Ioerger TR. TRANSIT--A software tool for himar1 TnSeq analysis. PLoS Comput Biol 2015; 11:e1004401 [View Article]
    [Google Scholar]
  23. Datsenko KA, Wanner BL. One-Step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000; 97:6640–6645 [View Article]
    [Google Scholar]
  24. Champion OL, Wagley S, Titball RW. Galleria mellonella as a model host for microbiological and toxin research. Virulence 2016; 7:840–845 [View Article]
    [Google Scholar]
  25. Azeroglu B, Mawer JSP, Cockram CA, White MA, Hasan AMM et al. Recg directs DNA synthesis during double-strand break repair. PLoS Genet 2016; 12:e1005799 [View Article]
    [Google Scholar]
  26. Hyytiainen H, Juntunen P, Scott T, Kytomaki L, Venho R et al. Effect of ciprofloxacin exposure on DNA repair mechanisms in campylobacter jejuni. Microbiology 2013; 159:2513–2523 [View Article]
    [Google Scholar]
  27. Qin TT, Kang HQ, Ma P, Li PP, Huang LY et al. Sos response and its regulation on the fluoroquinolone resistance. Ann Transl Med 2015; 3:358 [View Article]
    [Google Scholar]
  28. Dörr T, Lewis K, Vulić M. Sos response induces persistence to fluoroquinolones in Escherichia coli . PLoS Genet 2009; 5:e1000760 [View Article]
    [Google Scholar]
  29. Piddock LJ, Walters RN. Bactericidal activities of five quinolones for Escherichia coli strains with mutations in genes encoding the SOS response or cell division. Antimicrob Agents Chemother 1992; 36:819–825 [View Article]
    [Google Scholar]
  30. Tamayo M, Santiso R, Gosalvez J, Bou G, Fernández JL. Rapid assessment of the effect of ciprofloxacin on chromosomal DNA from Escherichia coli using an in situ DNA fragmentation assay. BMC Microbiol 2009; 9:69 [View Article]
    [Google Scholar]
  31. Urios A, Herrera G, Aleixandre V, Blanco M. Influence of recA mutations on gyrA dependent quinolone resistance. Biochimie 1991; 73:519–521 [View Article]
    [Google Scholar]
  32. Phillips-Jones MK, Harding SE. Antimicrobial resistance (AMR) nanomachines-mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation. Biophys Rev 2018; 10:347–362 [View Article]
    [Google Scholar]
  33. Kisker C, Schindelin H, Rees DC. Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem 1997; 66:233–267 [View Article]
    [Google Scholar]
  34. Ramadan MA, Tawfik AF, el-Kersh TA, Shibl AM. In vitro activity of subinhibitory concentrations of quinolones on urea-splitting bacteria: effect on urease activity and on cell surface hydrophobicity. J Infect Dis 1995; 171:483–486 [View Article]
    [Google Scholar]
  35. Abdullah MA, Abuo-Rahma GE, Abdelhafez EM, Hassan HA, Abd El-Baky RM. Design, synthesis, molecular docking, anti-Proteus mirabilis and urease inhibition of new fluoroquinolone carboxylic acid derivatives. Bioorg Chem 2017; 70:1–11 [View Article]
    [Google Scholar]
  36. Martinez A, Kolter R. Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J Bacteriol 1997; 179:5188–5194 [View Article]
    [Google Scholar]
  37. Bebel A, Karaca E, Kumar B, Stark WM, Barabas O. Structural snapshots of Xer recombination reveal activation by synaptic complex remodeling and DNA bending. Elife 2016; 5:e19706 [View Article]
    [Google Scholar]
  38. Suerbaum S, Leying H, Kroll HP, Gmeiner J, Opferkuch W. Influence of beta-lactam antibiotics and ciprofloxacin on cell envelope of Escherichia coli . Antimicrob Agents Chemother 1987; 31:1106–1110 [View Article]
    [Google Scholar]
  39. Breazeale SD, Ribeiro AA, McClerren AL, Raetz CRH. A formyltransferase required for polymyxin resistance in Escherichia coli and the modification oF lipid A with 4-amino-4-deoxy-L-arabinose. Identification and function oF UDP-4-deoxy-4-formamido-L-arabinose. J Biol Chem 2005; 280:14154–14167 [View Article]
    [Google Scholar]
  40. Carlsson KE, Liu J, Edqvist PJ, Francis MS. Extracytoplasmic-stress-responsive pathways modulate type III secretion in Yersinia pseudotuberculosis . Infect Immun 2007; 75:3913–3924 [View Article]
    [Google Scholar]
  41. Sugawara E, Nikaido H. Ompa is the principal nonspecific slow porin of Acinetobacter baumannii . J Bacteriol 2012; 194:4089–4096 [View Article]
    [Google Scholar]
  42. Correia S, Poeta P, Hébraud M, Capelo JL, Igrejas G. Mechanisms of quinolone action and resistance: where do we stand?. J Med Microbiol 2017; 66:551–559 [View Article]
    [Google Scholar]
  43. Wang Y. The function of OmpA in Escherichia coli . Biochem Biophys Res Commun 2002; 292:396–401 [View Article]
    [Google Scholar]
  44. Drawz SM, Papp-Wallace KM, Bonomo RA. New β-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob Agents Chemother 2014; 58:1835–1846 [View Article]
    [Google Scholar]
  45. Simmons LA, Goranov AI, Kobayashi H, Davies BW, Yuan DS et al. Comparison of responses to double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction. J Bacteriol 2009; 191:1152–1161 [View Article]
    [Google Scholar]
  46. Collin F, Karkare S, Maxwell A. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl Microbiol Biotechnol 2011; 92:479–497 [View Article]
    [Google Scholar]
  47. Chen CR, Malik M, Snyder M, Drlica K. Dna gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage. J Mol Biol 1996; 258:627–637 [View Article]
    [Google Scholar]
  48. Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 2013; 11:443–454 [View Article]
    [Google Scholar]
  49. Previato-Mello M, Meireles DdeA, Netto LES, da Silva Neto JF. Global transcriptional response to organic hydroperoxide and the role of OhrR in the control of virulence traits in Chromobacterium violaceum. Infect Immun 2017; 85: [View Article]
    [Google Scholar]
  50. Goswami M, Mangoli SH, Jawali N. Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli . Antimicrob Agents Chemother 2006; 50:949–954 [View Article]
    [Google Scholar]
  51. Wang X, Zhao X, Malik M, Drlica K. Contribution of reactive oxygen species to pathways of quinolone-mediated bacterial cell death. J Antimicrob Chemother 2010; 65:520–524 [View Article]
    [Google Scholar]
  52. Rasouly A, Nudler E. Antibiotic killing through oxidized nucleotides. Proc Natl Acad Sci USA 2018; 115:1967–1969 [View Article]
    [Google Scholar]
  53. Riber L, Olsson JA, Jensen RB, Skovgaard O, Dasgupta S et al. Hda-mediated inactivation of the dnaA protein and dnaA gene autoregulation act in concert to ensure homeostatic maintenance of the Escherichia coli chromosome. Genes Dev 2006; 20:2121–2134 [View Article]
    [Google Scholar]
  54. Charbon G, Bjørn L, Mendoza-Chamizo B, Frimodt-Møller J, Løbner-Olesen A. Oxidative DNA damage is instrumental in hyperreplication stress-induced inviability of Escherichia coli . Nucleic Acids Res 2014; 42:13228–13241 [View Article]
    [Google Scholar]
  55. Ishida T, Akimitsu N, Kashioka T, Hatano M, Kubota T et al. DiaA, a novel DnaA-binding protein, ensures the timely initiation of Escherichia coli chromosome replication. J Biol Chem 2004; 279:45546–45555 [View Article]
    [Google Scholar]
  56. Koç A, Wheeler LJ, Mathews CK, Merrill GF. Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. J Biol Chem 2004; 279:223–230 [View Article]
    [Google Scholar]
  57. Davies BW, Kohanski MA, Simmons LA, Winkler JA, Collins JJ et al. Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli . Mol Cell 2009; 36:845–860 [View Article]
    [Google Scholar]
  58. Crawford MA, Henard CA, Tapscott T, Porwollik S, McClelland M et al. DksA-Dependent transcriptional regulation in Salmonella experiencing nitrosative stress. Front Microbiol 2016; 7:444 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000304
Loading
/content/journal/mgen/10.1099/mgen.0.000304
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error