1887

Abstract

The Gram-positive enteropathogen () is the major cause of healthcare-associated diarrhoea and is also an important cause of community-acquired infectious diarrhoea. Considering the burden of the disease, many studies have employed whole-genome sequencing of bacterial isolates to identify factors that contribute to virulence and pathogenesis. Though extrachromosomal elements (ECEs) such as plasmids are important for these processes in other bacteria, the few characterized plasmids of have no relevant functions assigned and no systematic identification of plasmids has been carried out to date. Here, we perform an analysis of publicly available sequence data to show that ~13 % of all strains contain ECEs, with 1–6 elements per strain. Our approach identifies known plasmids (e.g. pCD6, pCD630 and cloning plasmids) and six novel putative plasmid families. Our study shows that plasmids are abundant and may encode functions that are relevant for physiology. The newly identified plasmids may also form the basis for the construction of novel cloning plasmids for that are compatible with existing tools.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000296
2019-09-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/mgen/5/9/mgen000296.html?itemId=/content/journal/mgen/10.1099/mgen.0.000296&mimeType=html&fmt=ahah

References

  1. Oren A, Rupnik M. Clostridium difficile and Clostridioides difficile: two validly published and correct names. Anaerobe 2018;52:125–126 [CrossRef]
    [Google Scholar]
  2. Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ. Clostridium difficile infection. Nat Rev Dis Primers 2016;2:16020 [CrossRef]
    [Google Scholar]
  3. Knetsch CW, Lawley TD, Hensgens MP, Corver J, Wilcox MW et al. Current application and future perspectives of molecular typing methods to study Clostridium difficile infections. Euro Surveill 2013;18:20381 [CrossRef]
    [Google Scholar]
  4. Goorhuis A, Bakker D, Corver J, Debast SB, Harmanus C et al. Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 2008;47:1162–1170 [CrossRef]
    [Google Scholar]
  5. He M, Miyajima F, Roberts P, Ellison L, Pickard DJ et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet 2013;45:109–113 [CrossRef]
    [Google Scholar]
  6. Smits WK. Hype or hypervirulence: a reflection on problematic C. difficile strains. Virulence 2013;4:592–596 [CrossRef]
    [Google Scholar]
  7. Merrigan M, Venugopal A, Mallozzi M, Roxas B, Viswanathan VK et al. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. J Bacteriol 2010;192:4904–4911 [CrossRef]
    [Google Scholar]
  8. Vedantam G, Clark A, Chu M, McQuade R, Mallozzi M et al. Clostridium difficile infection: toxins and non-toxin virulence factors, and their contributions to disease establishment and host response. Gut Microbes 2012;3:121–134 [CrossRef]
    [Google Scholar]
  9. Knetsch CW, Kumar N, Forster SC, Connor TR, Browne HP et al. Zoonotic transfer of Clostridium difficile harboring antimicrobial resistance between farm animals and humans. J Clin Microbiol 2018;56:e01384-17 [CrossRef]
    [Google Scholar]
  10. Collins J, Robinson C, Danhof H, Knetsch CW, van Leeuwen HC et al. Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature 2018;553:291–294 [CrossRef]
    [Google Scholar]
  11. Adams V, Li J, Wisniewski JA, Uzal FA, Moore RJ et al. Virulence plasmids of spore-forming bacteria. Microbiol Spectr 2014;2:PLAS-0024-2014 [CrossRef]
    [Google Scholar]
  12. Johnson TJ, Nolan LK. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol Mol Biol Rev 2009;73:750–774 [CrossRef]
    [Google Scholar]
  13. Pilla G, Tang CM. Going around in circles: virulence plasmids in enteric pathogens. Nat Rev Microbiol 2018;16:484–495 [CrossRef]
    [Google Scholar]
  14. Purdy D, O'Keeffe TAT, Elmore M, Herbert M, McLeod A et al. Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier. Mol Microbiol 2002;46:439–452 [CrossRef]
    [Google Scholar]
  15. Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 2006;38:779–786 [CrossRef]
    [Google Scholar]
  16. Smits WK, Weese JS, Roberts AP, Harmanus C, Hornung B. A helicase-containing module defines a family of pCD630-like plasmids in Clostridium difficile. Anaerobe 2018;49:78–84 [CrossRef]
    [Google Scholar]
  17. Amy J, Bulach D, Knight D, Riley T, Johanesen P et al. Identification of large cryptic plasmids in Clostridioides (Clostridium) difficile. Plasmid 2018;96-97:25–38 [CrossRef]
    [Google Scholar]
  18. Muldrow LL, Archibold ER, Nunez-Montiel OL, Sheehy RJ. Survey of the extrachromosomal gene pool of Clostridium difficile. J Clin Microbiol 1982;16:637–640
    [Google Scholar]
  19. Clabots C, Lee S, Gerding D, Mulligan M, Kwok R et al. Clostridium difficile plasmid isolation as an epidemiologic tool. Eur J Clin Microbiol Infect Dis 1988;7:312–315 [CrossRef]
    [Google Scholar]
  20. Fortier L-C. Bacteriophages Contribute to Shaping Clostridioides (Clostridium) difficile Species. Front Microbiol 2018;9:2033 [CrossRef]
    [Google Scholar]
  21. Sekulović O, Fortier L-C. Characterization of functional prophages in Clostridium difficile. Methods Mol Biol 2016;1476:143–165 [CrossRef]
    [Google Scholar]
  22. Brouwer MSM, Warburton PJ, Roberts AP, Mullany P, Allan E. Genetic organisation, mobility and predicted functions of genes on integrated, mobile genetic elements in sequenced strains of Clostridium difficile. PLoS One 2011;6:e23014 [CrossRef]
    [Google Scholar]
  23. Mullany P, Allan E, Roberts AP. Mobile genetic elements in Clostridium difficile and their role in genome function. Res Microbiol 2015;166:361–367 [CrossRef]
    [Google Scholar]
  24. Arredondo-Alonso S, Willems RJ, van Schaik W, Schürch AC. On the (im)possibility of reconstructing plasmids from whole-genome short-read sequencing data. Microb Genom 2017;3:e000128 [CrossRef]
    [Google Scholar]
  25. Lanza VF, de Toro M, Garcillán-Barcia MP, Mora A, Blanco J et al. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences. PLoS Genet 2014;10:e1004766 [CrossRef]
    [Google Scholar]
  26. Vielva L, de Toro M, Lanza VF, de la Cruz F. PLACNETw: a web-based tool for plasmid reconstruction from bacterial genomes. Bioinformatics 2017;33:3796–3798 [CrossRef]
    [Google Scholar]
  27. NCBI Resource Coordinators Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2013;41:D8–D20 [CrossRef]
    [Google Scholar]
  28. Chikhi R, Medvedev P. Informed and automated k-mer size selection for genome assembly. Bioinformatics 2014;30:31–37 [CrossRef]
    [Google Scholar]
  29. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008;18:821–829 [CrossRef]
    [Google Scholar]
  30. Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics, and function using NetworkX In: Proceedings of the 7th Python in Science Conference Pasadena, CA: SciPy; 2008
    [Google Scholar]
  31. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016;8:12–24 [CrossRef]
    [Google Scholar]
  32. Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J et al. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods 2018;15:475–476 [CrossRef]
    [Google Scholar]
  33. The Anaconda Team Anaconda Distribution version 2-2.4.0; 2016;https://anaconda.comhttps://anaconda.com
  34. van Rossum G. Python Tutorial, Technical Report CS-R9526 Amsterdam: Centrum voor Wiskunde en Informatica (CWI); 1995
    [Google Scholar]
  35. van der Walt S, Colbert SC, Varoquaux G. The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 2011;13:22–30 [CrossRef]
    [Google Scholar]
  36. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010;5:e11147 [CrossRef]
    [Google Scholar]
  37. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef]
    [Google Scholar]
  38. Page AJ, Taylor B, Keane JA. Multilocus sequence typing by blast from de novo assemblies against PubMLST. J Open Source Softw 2016;1:118 [CrossRef]
    [Google Scholar]
  39. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016;17:132 [CrossRef]
    [Google Scholar]
  40. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010;11:119 [CrossRef]
    [Google Scholar]
  41. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100–3108 [CrossRef]
    [Google Scholar]
  42. Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 2004;32:11–16 [CrossRef]
    [Google Scholar]
  43. Bland C, Ramsey TL, Sabree F, Lowe M, Brown K et al. CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 2007;8:209 [CrossRef]
    [Google Scholar]
  44. Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK et al. InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 2012;40:D306–D312 [CrossRef]
    [Google Scholar]
  45. Claudel-Renard C, Chevalet C, Faraut T, Kahn D. Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids Res 2003;31:6633–6639 [CrossRef]
    [Google Scholar]
  46. Yin Y, Mao X, Yang J, Chen X, Mao F et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2012;40:W445–W451 [CrossRef]
    [Google Scholar]
  47. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al. Gene ontology: tool for the unification of biology. Nat Genet 2000;25:25–29 [CrossRef]
    [Google Scholar]
  48. Mukherjee S, Huntemann M, Ivanova N, Kyrpides NC, Pati A. Large-scale contamination of microbial isolate genomes by Illumina phiX control. Stand Genomic Sci 2015;10:18 [CrossRef]
    [Google Scholar]
  49. Sekulovic O, Fortier L-C. Global transcriptional response of Clostridium difficile carrying the ϕCD38-2 prophage. Appl Environ Microbiol 2015;81:1364–1374 [CrossRef]
    [Google Scholar]
  50. Horgan M, O'Sullivan O, Coffey A, Fitzgerald GF, van Sinderen D et al. Genome analysis of the Clostridium difficile phage ϕCD6356, a temperate phage of the Siphoviridae family. Gene 2010;462:34–43 [CrossRef]
    [Google Scholar]
  51. Bauer MP, Notermans DW, van Benthem BHB, Brazier JS, Wilcox MH et al. Clostridium difficile infection in Europe: a hospital-based survey. The Lancet 2011;377:63–73 [CrossRef]
    [Google Scholar]
  52. Knetsch CW, Terveer EM, Lauber C, Gorbalenya AE, Harmanus C et al. Comparative analysis of an expanded Clostridium difficile reference strain collection reveals genetic diversity and evolution through six lineages. Infection, Genetics and Evolution 2012;12:1577–1585 [CrossRef]
    [Google Scholar]
  53. Dingle KE, Elliott B, Robinson E, Griffiths D, Eyre DW et al. Evolutionary history of the Clostridium difficile pathogenicity locus. Genome Biol Evol 2014;6:36–52 [CrossRef]
    [Google Scholar]
  54. Haraldsen JD, Sonenshein AL. Efficient sporulation in Clostridium difficile requires disruption of the σK gene. Mol Microbiol 2003;48:811–821 [CrossRef]
    [Google Scholar]
  55. Luo H, Quan C-L, Peng C, Gao F. Recent development of Ori-Finder system and DoriC database for microbial replication origins. Brief Bioinform 2018;;https://doi.org/10.1093/bib/bbx174. [CrossRef]
    [Google Scholar]
  56. Dong X, Stothard P, Forsythe IJ, Wishart DS. PlasMapper: a web server for drawing and auto-annotating plasmid maps. Nucleic Acids Res 2004;32:W660–W664 [CrossRef]
    [Google Scholar]
  57. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015;10:845–858 [CrossRef]
    [Google Scholar]
  58. Liu F, Lee H, Lan R, Zhang L. Zonula occludens toxins and their prophages in Campylobacter species. Gut Pathog 2016;8:43 [CrossRef]
    [Google Scholar]
  59. Mahendran V, Tan YS, Riordan SM, Grimm MC, Day AS et al. The prevalence and polymorphisms of zonula occluden toxin gene in multiple Campylobacter concisus strains isolated from saliva of patients with inflammatory bowel disease and controls. PLoS One 2013;8:e75525 [CrossRef]
    [Google Scholar]
  60. Hackbarth CJ, Chambers HF. blaI and blaR1 regulate β-lactamase and PBP 2a production in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 1993;37:1144–1149 [CrossRef]
    [Google Scholar]
  61. Pence MA, Haste NM, Meharena HS, Olson J, Gallo RL et al. Beta-lactamase repressor BlaI modulates Staphylococcus aureus cathelicidin antimicrobial peptide resistance and virulence. PLoS One 2015;10:e0136605 [CrossRef]
    [Google Scholar]
  62. Sandhu BK, Edwards AN, Anderson SE, Woods EC, McBride SM. Characterization of a β-lactamase that contributes to intrinsic β-lactam resistance in Clostridioides difficile. BioRxiv 2019
    [Google Scholar]
  63. Hudson GA, Mitchell DA. RiPP antibiotics: biosynthesis and engineering potential. Curr Opin Microbiol 2018;45:61–69 [CrossRef]
    [Google Scholar]
  64. van Heel AJ, de Jong A, Song C, Viel JH, Kok J et al. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res 2018;46:W278–W281 [CrossRef]
    [Google Scholar]
  65. Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R et al. Colicin biology. Microbiol Mol Biol Rev 2007;71:158–229 [CrossRef]
    [Google Scholar]
  66. van Belkum MJ, Martin-Visscher LA, Vederas JC. Structure and genetics of circular bacteriocins. Trends Microbiol 2011;19:411–418 [CrossRef]
    [Google Scholar]
  67. Briani F, Dehò G, Forti F, Ghisotti D. The plasmid status of satellite bacteriophage P4. Plasmid 2001;45:1–17 [CrossRef]
    [Google Scholar]
  68. Brenner S, Cesareni G, Karn J. Phasmids: hybrids between Co1E1 plasmids and E. coli bacteriophage lambda. Gene 1982;17:27–44 [CrossRef]
    [Google Scholar]
  69. Heap JT, Pennington OJ, Cartman ST, Minton NP. A modular system for Clostridium shuttle plasmids. J Microbiol Methods 2009;78:79–85 [CrossRef]
    [Google Scholar]
  70. Brouwer MSM, Roberts AP, Hussain H, Williams RJ, Allan E et al. Horizontal gene transfer converts non-toxigenic Clostridium difficile strains into toxin producers. Nat Commun 2013;4:2601 [CrossRef]
    [Google Scholar]
  71. Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EPC, de la Cruz F. Mobility of plasmids. Microbiol Mol Biol Rev 2010;74:434–452 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000296
Loading
/content/journal/mgen/10.1099/mgen.0.000296
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error