1887

Abstract

Malaria was present in most of Europe until the second half of the 20th century, when it was eradicated through a combination of increased surveillance and mosquito control strategies, together with cross-border and political collaboration. Despite the severe burden of malaria on human populations, it remains contentious how the disease arrived and spread in Europe. Here, we report a partial nuclear genome derived from a set of antique medical slides stained with the blood of malaria-infected patients from Spain’s Ebro Delta, dating to the 1940s. Our analyses of the genome of this now eradicated European strain confirms stronger phylogeographical affinity to present-day strains in circulation in central south Asia, rather than to those in Africa. This points to a longitudinal, rather than a latitudinal, spread of malaria into Europe. In addition, this genome displays two derived alleles in the gene that have been associated with drug resistance. Whilst this could represent standing variation in the ancestral population, these mutations may also have arisen due to the selective pressure of quinine treatment, which was an anti-malarial drug already in use by the time the sample we sequenced was mounted on a slide.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000289
2019-09-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/mgen/5/9/mgen000289.html?itemId=/content/journal/mgen/10.1099/mgen.0.000289&mimeType=html&fmt=ahah

References

  1. MalariaGEN Plasmodium falciparum Community Project 2016; Genomic epidemiology of artemisinin resistant malaria. https://elifesciences.org/articles/08714
  2. Jones WHS. Malaria, a Neglected Factor in the History of Greece and Rome Cambridge: Cambridge University Press; 1907; pp97–102
    [Google Scholar]
  3. Sallares R, Bouwman A, Anderung C. The spread of malaria to southern Europe in antiquity: new approaches to old problems. Med Hist 2004;48:311–328 [CrossRef]
    [Google Scholar]
  4. De Zulueta J. Malaria and Mediterranean history. Parassitologia 1973;15:1–15
    [Google Scholar]
  5. Sallares R, Gomzi S. Biomolecular archaeology of malaria. Ancient Biomolecules 2001;3:195–213
    [Google Scholar]
  6. Marciniak S, Prowse TL, Herring DA, Klunk J, Kuch M et al. Plasmodium falciparum malaria in 1st–2nd century CE southern Italy. Current Biology 2016;26:R1220–R1222 [CrossRef]
    [Google Scholar]
  7. Gelabert P, Sandoval-Velasco M, Olalde I, Fregel R, Rieux A et al. Mitochondrial DNA from the eradicated European Plasmodium vivax and P. falciparum from 70-year-old slides from the Ebro Delta in Spain. Proc Natl Acad Sci USA 2016;113:11495–11500 [CrossRef]
    [Google Scholar]
  8. Andrews S. FastQC, a quality control tool for high throughput sequence data 2010;http://www.Bioinformatics.Babraham.Ac.Uk/Projects/Fastqc/
  9. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads.. EMBnet.Journal 2011;17:10–12
    [Google Scholar]
  10. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–1760 [CrossRef]
    [Google Scholar]
  11. Key FM, Posth C, Krause J, Herbig A, Bos KI. Mining metagenomic data sets for ancient DNA: recommended protocols for authentication. Trends Genet 2017;33:508–520 [CrossRef]
    [Google Scholar]
  12. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009;25:2078–2079 [CrossRef]
    [Google Scholar]
  13. Jónsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L et al. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 2013;29:1682–1684 [CrossRef]
    [Google Scholar]
  14. García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S et al. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 2012;28:2678–2679 [CrossRef]
    [Google Scholar]
  15. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G et al. From FastQ data to high-confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 2013;43:11.10.1–11.10.33
    [Google Scholar]
  16. Danecek P, Auton A, Abecasis G, Albers CA, Banks E et al. The variant call format and VCFtools. Bioinformatics 2011;27:2156–2158 [CrossRef]
    [Google Scholar]
  17. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U et al. A draft sequence of the Neandertal genome. Science 2010;328:710–722 [CrossRef]
    [Google Scholar]
  18. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006;38:904–909 [CrossRef]
    [Google Scholar]
  19. Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N et al. Ancient admixture in human history. Genetics 2012;192:1065–1093 [CrossRef]
    [Google Scholar]
  20. Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population structure using dense haplotype data. PLoS Genet 2012;8:e1002453 [CrossRef]
    [Google Scholar]
  21. Jiang H, Li N, Gopalan V, Zilversmit MM, Varma S et al. High recombination rates and hotspots in a Plasmodium falciparum genetic cross. Genome Biol 2011;12:R33 [CrossRef]
    [Google Scholar]
  22. Foote SJ, Kyle DE, Martin RK, Oduola AM, Forsyth K et al. Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature 1990;345:255–258 [CrossRef]
    [Google Scholar]
  23. Price RN, Cassar C, Brockman A, Duraisingh M, van Vugt M et al. The pfmdr1 gene is associated with a multidrug-resistant phenotype in Plasmodium falciparum from the Western border of Thailand. Antimicrob Agents Chemother 1999;43:2943–2949 [CrossRef]
    [Google Scholar]
  24. Dahlström S, Ferreira PE, Veiga MI, Sedighi N, Wiklund L et al. Plasmodium falciparum multidrug resistance protein 1 and artemisinin-based combination therapy in Africa. J Infect Dis 2009;200:1456–1464 [CrossRef]
    [Google Scholar]
  25. Rottmann M, McNamara C, Yeung BKS, Lee MCS, Zou B et al. Spiroindolones, a potent compound class for the treatment of malaria. Science 2010;329:1175–1180 [CrossRef]
    [Google Scholar]
  26. Setthaudom C, Tan-ariya P, Sitthichot N, Khositnithikul R, Suwandittakul N et al. Role of Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes on in vitro chloroquine resistance in isolates of Plasmodium falciparum from Thailand. Am J Trop Med Hyg 2011;85:606–611 [CrossRef]
    [Google Scholar]
  27. Veiga MI, Ferreira PE, Jörnhagen L, Malmberg M, Kone A et al. Novel polymorphisms in Plasmodium falciparum ABC transporter genes are associated with major ACT antimalarial drug resistance. PLoS One 2011;6:e20212 [CrossRef]
    [Google Scholar]
  28. Takala-Harrison S, Clark TG, Jacob CG, Cummings MP, Miotto O et al. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia. Proc Natl Acad Sci USA 2013;110:240–245 [CrossRef]
    [Google Scholar]
  29. Gupta B, Xu S, Wang Z, Sun L, Miao J et al. Plasmodium falciparum multidrug resistance protein 1 (pfmrp1) gene and its association with in vitro drug susceptibility of parasite isolates from north-east Myanmar. J Antimicrob Chemother 2014;69:2110–2117 [CrossRef]
    [Google Scholar]
  30. Vaidya AB, Morrisey JM, Zhang Z, Das S, Daly TM et al. Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum. Nat Commun 2014;5:5521 [CrossRef]
    [Google Scholar]
  31. Miotto O, Amato R, Ashley EA, MacInnis B, Almagro-Garcia J et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet 2015;47:226–234 [CrossRef]
    [Google Scholar]
  32. Pelleau S, Moss EL, Dhingra SK, Volney B, Casteras J et al. Adaptive evolution of malaria parasites in French Guiana: reversal of chloroquine resistance by acquisition of a mutation in pfcrt. Proc Natl Acad Sci USA 2015;112:11672–11677 [CrossRef]
    [Google Scholar]
  33. Callaghan PS, Siriwardana A, Hassett MR, Roepe PD. Plasmodium falciparum chloroquine resistance transporter (PfCRT) isoforms PH1 and PH2 perturb vacuolar physiology. Malar J 2016;15:186 [CrossRef]
    [Google Scholar]
  34. Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 2000;403:906–909 [CrossRef]
    [Google Scholar]
  35. Mishra N, Bharti RS, Mallick P, Singh OP, Srivastava B et al. Emerging polymorphisms in falciparum Kelch 13 gene in Northeastern region of India. Malar J 2016;15:4–9 [CrossRef]
    [Google Scholar]
  36. Wang Z, Cabrera M, Yang J, Yuan L, Gupta B et al. Genome-wide association analysis identifies genetic loci associated with resistance to multiple antimalarials in Plasmodium falciparum from China-Myanmar border. Sci Rep 2016;6:33891. [CrossRef]
    [Google Scholar]
  37. Ye R, Hu D, Zhang Y, Huang Y, Sun X et al. Distinctive origin of artemisinin-resistant Plasmodium falciparum on the China-Myanmar border. Sci Rep 2016;6:20100 [CrossRef]
    [Google Scholar]
  38. Kobasa T, Talundzic E, Sug-aram R, Boondat P, Goldman IF et al. Emergence and spread of kelch13 mutations associated with artemisinin resistance in Plasmodium falciparum parasites in 12 Thai provinces from 2007 to 2016. Antimicrob Agents Chemother 2018;62:e02141-17 [CrossRef]
    [Google Scholar]
  39. Ross LS, Dhingra SK, Mok S, Yeo T, Wicht KJ et al. Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine. Nat Commun 2018;9:3314. [CrossRef]
    [Google Scholar]
  40. Mu J, Ferdig MT, Feng X, Joy DA, Duan J et al. Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Mol Microbiol 2003;49:977–989 [CrossRef]
    [Google Scholar]
  41. Pickard AL, Wongsrichanalai C, Purfield A, Kamwendo D, Emery K et al. Resistance to antimalarials in Southeast Asia and genetic polymorphisms in PfMDR1. Antimicrob Agents Chemother 2003;47:2418–2423 [CrossRef]
    [Google Scholar]
  42. Durrand V, Berry A, Sem R, Glaziou P, Beaudou J et al. Variations in the sequence and expression of the Plasmodium falciparum chloroquine resistance transporter (Pfcrt) and their relationship to chloroquine resistance in vitro. Mol Biochem Parasitol 2004;136:273–285 [CrossRef]
    [Google Scholar]
  43. Happi CT, Gbotosho GO, Folarin OA, Akinboye DO, Yusuf BO et al. Polymorphisms in Plasmodium falciparum dhfr and dhps genes and age related in vivo sulfadoxine-pyrimethamine resistance in malaria-infected patients from Nigeria. Acta Trop 2005;95:183–193 [CrossRef]
    [Google Scholar]
  44. Sidhu ABS, Valderramos SG, Fidock DA. Pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Mol Microbiol 2005;57:913–926 [CrossRef]
    [Google Scholar]
  45. Echeverry DF, Holmgren G, Murillo C, Higuita JC, Björkman A et al. Polymorphisms in the pfcrt and pfmdr1 genes of Plasmodium falciparum and in vitro susceptibility to amodiaquine and desethylamodiaquine. Am J Trop Med Hyg 2007;77:1034–1038 [CrossRef]
    [Google Scholar]
  46. Dahlström S, Veiga MI, Mårtensson A, Björkman A, Gil JP. Polymorphism in PfMRP1 (Plasmodium falciparum multidrug resistance protein 1) amino acid 1466 associated with resistance to sulfadoxine-pyrimethamine treatment. Antimicrob Agents Chemother 2009;53:2553–2556 [CrossRef]
    [Google Scholar]
  47. Pierre L. JVarkit: java-based utilities for bioinformatics. 2015
  48. Tyagi S, Pande V, Das A. New insights into the evolutionary history of Plasmodium falciparum from mitochondrial genome sequence analyses of Indian isolates. Mol Ecol 2014;23:2975–2987 [CrossRef]
    [Google Scholar]
  49. Raj DK, Mu J, Jiang H, Kabat J, Singh S et al. Disruption of a Plasmodium falciparum multidrug resistance-associated protein (PfMRP) alters its fitness and transport of antimalarial drugs and glutathione. J Biol Chem 2009;284:7687–7696 [CrossRef]
    [Google Scholar]
  50. Briggs AW, Stenzel U, Johnson PLF, Green RE, Kelso J et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc Natl Acad Sci USA 2007;104:14616–14621 [CrossRef]
    [Google Scholar]
  51. Brynildsrud OB, Pepperell CS, Suffys P, Grandjean L, Monteserin J et al. Global expansion of Mycobacterium tuberculosis lineage 4 shaped by colonial migration and local adaptation. Sci Adv 2018;4:eaat5869 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000289
Loading
/content/journal/mgen/10.1099/mgen.0.000289
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error