1887

Abstract

Vancomycin-resistant (VREfm) is a globally significant public health threat and was listed on the World Health Organization’s 2017 list of high-priority pathogens for which new treatments are urgently needed. Treatment options for invasive VREfm infections are very limited, and outcomes are often poor. Whole-genome sequencing is providing important new insights into VREfm evolution, drug resistance and hospital adaptation, and is increasingly being used to track VREfm transmission within hospitals to detect outbreaks and inform infection control practices. This mini-review provides an overview of recent data on the use of genomics to understand and respond to the global problem of VREfm.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000283
2019-07-01
2019-08-18
Loading full text...

Full text loading...

/deliver/fulltext/mgen/5/7/mgen000283.html?itemId=/content/journal/mgen/10.1099/mgen.0.000283&mimeType=html&fmt=ahah

References

  1. de Fátima Silva Lopes M, Ribeiro T, Abrantes M, Figueiredo Marques JJ, Tenreiro R et al. Antimicrobial resistance profiles of dairy and clinical isolates and type strains of enterococci. Int J Food Microbiol 2005;103:191–198 [CrossRef]
    [Google Scholar]
  2. Van Tyne D, Gilmore MS. Friend turned foe: evolution of enterococcal virulence and antibiotic resistance. Annu Rev Microbiol 2014;68:337–356 [CrossRef]
    [Google Scholar]
  3. Werner G, Coque TM, Hammerum AM, Hope R, Hryniewicz W et al. Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull13:
    [Google Scholar]
  4. Deshpande LM, Fritsche TR, Moet GJ, Biedenbach DJ, Jones RN. Antimicrobial resistance and molecular epidemiology of vancomycin-resistant enterococci from North America and Europe: a report from the SENTRY antimicrobial surveillance program. Diagn Microbiol Infect Dis 2007;58:163–170 [CrossRef]
    [Google Scholar]
  5. Freitas AR, Tedim AP, Francia MV, Jensen LB, Novais C et al. Multilevel population genetic analysis of vanA and vanB Enterococcus faecium causing nosocomial outbreaks in 27 countries (1986-2012). J Antimicrob Chemother 2016;71:3351–3366 [CrossRef]
    [Google Scholar]
  6. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018;18:318–327 [CrossRef]
    [Google Scholar]
  7. Agudelo Higuita NI, Huycke MM. Enterococcal Disease, Epidemiology, and Implications for Treatment In Gilmore MS, Clewell DB, Ike Y, Shankar N. (editors) Enterococci: From Commensals to Leading Causes of Drug Resistant Infection 2014;http://www.ncbi.nlm.nih.gov/books/NBK190429/
    [Google Scholar]
  8. Ahmed MO, Baptiste KE. Vancomycin-Resistant enterococci: a review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb Drug Resist 2018;24:590–606 [CrossRef]
    [Google Scholar]
  9. Homan WL, Tribe D, Poznanski S, Li M, Hogg G et al. Multilocus sequence typing scheme for Enterococcus faecium. J Clin Microbiol 2002;40:1963–1971 [CrossRef]
    [Google Scholar]
  10. Reuter S, Ellington MJ, Cartwright EJP, Köser CU, Török ME et al. Rapid bacterial whole-genome sequencing to enhance diagnostic and public health microbiology. JAMA Intern Med 2013;173:1397–1404 [CrossRef]
    [Google Scholar]
  11. Brodrick HJ, Raven KE, Harrison EM, Blane B, Reuter S et al. Whole-Genome sequencing reveals transmission of vancomycin-resistant Enterococcus faecium in a healthcare network. Genome Med 2016;8:4 [CrossRef]
    [Google Scholar]
  12. Lam MMC, Seemann T, Bulach DM, Gladman SL, Chen H et al. Comparative analysis of the first complete Enterococcus faecium genome. J Bacteriol 2012;194:2334–2341 [CrossRef]
    [Google Scholar]
  13. Qin X, Galloway-Peña JR, Sillanpaa J, Roh JH, Nallapareddy SR et al. Complete genome sequence of Enterococcus faecium strain TX16 and comparative genomic analysis of Enterococcus faecium genomes. BMC Microbiol 2012;12:135 [CrossRef]
    [Google Scholar]
  14. Galloway-Peña J, Roh JH, Latorre M, Qin X, Murray BE. Genomic and SNP analyses demonstrate a distant separation of the hospital and community-associated clades of Enterococcus faecium. PLoS One 2012;7:e30187 [CrossRef]
    [Google Scholar]
  15. de Been M, Pinholt M, Top J, Bletz S, Mellmann A et al. Core genome multilocus sequence typing scheme for high- resolution typing of Enterococcus faecium. J Clin Microbiol 2015;53:3788–3797 [CrossRef]
    [Google Scholar]
  16. Lebreton F, van Schaik W, McGuire AM, Godfrey P, Griggs A et al. Emergence of epidemic multidrug-resistant Enterococcus faecium from animal and commensal strains. MBio 2013;4:e00534–13 [CrossRef]
    [Google Scholar]
  17. Raven KE, Reuter S, Reynolds R, Brodrick HJ, Russell JE et al. A decade of genomic history for healthcare-associated Enterococcus faecium in the United Kingdom and Ireland. Genome Res 2016;26:1388–1396 [CrossRef]
    [Google Scholar]
  18. Gouliouris T, Raven KE, Ludden C, Blane B, Corander J et al. Genomic surveillance of Enterococcus faecium reveals limited sharing of strains and resistance genes between livestock and humans in the United Kingdom. MBio 2018;9:e01780–18 [CrossRef]
    [Google Scholar]
  19. Carter GP, Buultjens AH, Ballard SA, Baines SL, Tomita T et al. Emergence of endemic MLST non-typeable vancomycin-resistant Enterococcus faecium. J Antimicrob Chemother 2016;71:3367–3371 [CrossRef]
    [Google Scholar]
  20. Howden BP, Holt KE, Lam MMC, Seemann T, Ballard S et al. Genomic insights to control the emergence of vancomycin-resistant enterococci. MBio 2013;4:e00412–00413 [CrossRef]
    [Google Scholar]
  21. Pinholt M, Larner-Svensson H, Littauer P, Moser CE, Pedersen M et al. Multiple hospital outbreaks of vanA Enterococcus faecium in Denmark, 2012-13, investigated by WGS, MLST and PFGE. J Antimicrob Chemother 2015;70:2474–2482 [CrossRef]
    [Google Scholar]
  22. Raven KE, Gouliouris T, Brodrick H, Coll F, Brown NM et al. Complex routes of nosocomial vancomycin-resistant Enterococcus faecium transmission revealed by genome sequencing. Clin Infect Dis 2017;64:886–893 [CrossRef]
    [Google Scholar]
  23. Raven KE, Gouliouris T, Parkhill J, Peacock SJ. Genome-Based analysis of Enterococcus faecium bacteremia associated with recurrent and Mixed-Strain infection. J Clin Microbiol 2018;56:e01520–17 [CrossRef]
    [Google Scholar]
  24. Pinholt M, Bayliss SC, Gumpert H, Worning P, Jensen VVS et al. WGS of 1058 Enterococcus faecium from Copenhagen, Denmark, reveals rapid clonal expansion of vancomycin-resistant clone ST80 combined with widespread dissemination of a vanA-containing plasmid and acquisition of a heterogeneous accessory genome. J Antimicrob Chemother 2019;74:1776–1785 [CrossRef]
    [Google Scholar]
  25. Arthur M, Reynolds P, Courvalin P. Glycopeptide resistance in enterococci. Trends Microbiol 1996;4:401–407 [CrossRef]
    [Google Scholar]
  26. Coombs G. Australian enterococcal sepsis outcome program (AESOP). The Australian Group on Antimicrobial Resistance 2016
    [Google Scholar]
  27. Bender JK, Kalmbach A, Fleige C, Klare I, Fuchs S et al. Population structure and acquisition of the vanB resistance determinant in German clinical isolates of Enterococcus faecium ST192. Sci Rep 2016;6:21847 [CrossRef]
    [Google Scholar]
  28. Courvalin P. Vancomycin resistance in gram-positive cocci. Clinical Infectious Diseases 2006;42:S25–S34 [CrossRef]
    [Google Scholar]
  29. Arthur M, Reynolds PE, Depardieu F, Evers S, Dutka-Malen S et al. Mechanisms of glycopeptide resistance in enterococci. J Infect 1996;32:11–16 [CrossRef]
    [Google Scholar]
  30. Arthur M, Quintiliani R. Regulation of VanA- and VanB-type glycopeptide resistance in enterococci. Antimicrob Agents Chemother 2001;45:375–381 [CrossRef]
    [Google Scholar]
  31. Dahl KH, Simonsen GS, Olsvik O, Sundsfjord A. Heterogeneity in the vanB gene cluster of genomically diverse clinical strains of vancomycin-resistant enterococci. Antimicrob Agents Chemother 1999;43:1105–1110 [CrossRef]
    [Google Scholar]
  32. Dahl KH, Røkenes TP, Lundblad EW, Sundsfjord A. Nonconjugative transposition of the vanB-containing Tn5382-like element in Enterococcus faecium. Antimicrob Agents Chemother 2003;47:786–789 [CrossRef]
    [Google Scholar]
  33. Carias LL, Rudin SD, Donskey CJ, Rice LB. Genetic linkage and cotransfer of a novel, vanB-containing transposon (Tn5382) and a low-affinity penicillin-binding protein 5 gene in a clinical vancomycin-resistant Enterococcus faecium isolate. J Bacteriol 1998;180:4426–4434
    [Google Scholar]
  34. Cetinkaya Y, Falk P, Mayhall CG. Vancomycin-Resistant enterococci. Clin Microbiol Rev 2000;13:686–707 [CrossRef]
    [Google Scholar]
  35. Reynolds PE, Courvalin P. Vancomycin resistance in enterococci due to synthesis of precursors terminating in D-alanyl-D-serine. Antimicrob Agents Chemother 2005;49:21–25 [CrossRef]
    [Google Scholar]
  36. Naser SM, Vancanneyt M, Hoste B, Snauwaert C, Vandemeulebroecke K et al. Reclassification of Enterococcus flavescens Pompei, et al. 1992 as a later synonym of Enterococcus casseliflavus (ex Vaughan, et al. 1979) Collins, et al. 1984 and Enterococcus saccharominimus Vancanneyt, et al. 2004 as a later synonym of Enterococcus italicus Fortina, et al. 2004. Int J Syst Evol Microbiol2006:413–416
    [Google Scholar]
  37. Dutta I, Reynolds PE. Biochemical and genetic characterization of the vanC-2 vancomycin resistance gene cluster of Enterococcus casseliflavus ATCC 25788. Antimicrob Agents Chemother 2002;46:3125–3132 [CrossRef]
    [Google Scholar]
  38. Depardieu F, Reynolds PE, Courvalin P. Vand-Type vancomycin-resistant Enterococcus faecium 10/96A. Antimicrob Agents Chemother 2003;47:7–18 [CrossRef]
    [Google Scholar]
  39. Depardieu F, Kolbert M, Pruul H, Bell J, Courvalin P. Vand-Type vancomycin-resistant Enterococcus faecium and Enterococcus faecalis. Antimicrob Agents Chemother 2004;48:3892–3904 [CrossRef]
    [Google Scholar]
  40. Perichon B, Reynolds P, Courvalin P. Vand-Type glycopeptide-resistant Enterococcus faecium BM4339. Antimicrob Agents Chemother 1997;41:2016–2018 [CrossRef]
    [Google Scholar]
  41. Fines M, Perichon B, Reynolds P, Sahm DF, Courvalin P. Vane, a new type of acquired glycopeptide resistance in Enterococcus faecalis BM4405. Antimicrob Agents Chemother 1999;43:2161–2164 [CrossRef]
    [Google Scholar]
  42. McKessar SJ, Berry AM, Bell JM, Turnidge JD, Paton JC. Genetic characterization of vanG, a novel vancomycin resistance locus of Enterococcus faecalis. Antimicrob Agents Chemother 2000;44:3224–3228 [CrossRef]
    [Google Scholar]
  43. Boyd DA, Willey BM, Fawcett D, Gillani N, Mulvey MR. Molecular characterization of Enterococcus faecalis N06-0364 with low-level vancomycin resistance harboring a novel D-Ala-D-Ser gene cluster, vanL. Antimicrob Agents Chemother 2008;52:2667–2672 [CrossRef]
    [Google Scholar]
  44. Xu X, Lin D, Yan G, Ye X, Wu S et al. vanM, a new glycopeptide resistance gene cluster found in Enterococcus faecium. Antimicrob Agents Chemother 2010;54:4643–4647 [CrossRef]
    [Google Scholar]
  45. Lebreton F, Depardieu F, Bourdon N, Fines-Guyon M, Berger P et al. D-Ala-d-Ser VanN-type transferable vancomycin resistance in Enterococcus faecium. Antimicrob Agents Chemother 2011;55:4606–4612 [CrossRef]
    [Google Scholar]
  46. Talebi M, Pourshafie MR, Katouli M, Möllby R. Molecular structure and transferability of TN1546-like elements in Enterococcus faecium isolates from clinical, sewage, and surface water samples in Iran. Appl Environ Microbiol 2008;74:1350–1356 [CrossRef]
    [Google Scholar]
  47. Werner G, Klare I, Fleige C, Witte W. Increasing rates of vancomycin resistance among Enterococcus faecium isolated from German hospitals between 2004 and 2006 are due to wide clonal dissemination of vancomycin-resistant enterococci and horizontal spread of vanA clusters. Int J Med Microbiol 2008;298:515–527 [CrossRef]
    [Google Scholar]
  48. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 2018;31:e00088–17 [CrossRef]
    [Google Scholar]
  49. Stinear TP, Olden DC, Johnson PDR, Davies JK, Grayson ML. Enterococcal vanB resistance locus in anaerobic bacteria in human faeces. The Lancet 2001;357:855–856 [CrossRef]
    [Google Scholar]
  50. Domingo M-C, Huletsky A, Giroux R, Picard FJ, Bergeron MG. vanD and vanG-like gene clusters in a Ruminococcus species isolated from human bowel flora. Antimicrob Agents Chemother 2007;51:4111–4117 [CrossRef]
    [Google Scholar]
  51. Ballard SA, Pertile KK, Lim M, Johnson PDR, Grayson ML. Molecular characterization of vanB elements in naturally occurring gut anaerobes. Antimicrob Agents Chemother 2005;49:1688–1694 [CrossRef]
    [Google Scholar]
  52. Palmer KL, van Schaik W, Willems RJL, Gilmore MS. Enterococcal Genomics In Gilmore MS, Clewell DB, Ike Y, Shankar N. (editors) Enterococci: From Commensals to Leading Causes of Drug Resistant Infection Boston: Massachusetts Eye and Ear Infirmary; 2014;http://www.ncbi.nlm.nih.gov/books/NBK190425/
    [Google Scholar]
  53. van Hal SJ, Ip CLC, Ansari MA, Wilson DJ, Espedido BA et al. Evolutionary dynamics of Enterococcus faecium reveals complex genomic relationships between isolates with independent emergence of vancomycin resistance. Microb Genom 2016;2:e000048 [CrossRef]
    [Google Scholar]
  54. Lytsy B, Engstrand L, Gustafsson Åke, Kaden R. Time to review the gold standard for genotyping vancomycin-resistant enterococci in epidemiology: comparing whole-genome sequencing with PFGE and MLST in three suspected outbreaks in Sweden during 2013–2015. Infection, Genetics and Evolution 2017;54:74–80 [CrossRef]
    [Google Scholar]
  55. Salipante SJ, SenGupta DJ, Cummings LA, Land TA, Hoogestraat DR et al. Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology. J Clin Microbiol 2015;53:1072–1079 [CrossRef]
    [Google Scholar]
  56. Lee T, Pang S, Abraham S, Coombs GW. Antimicrobial-Resistant CC17 Enterococcus faecium: the past, the present and the future. J Glob Antimicrob Resist 2019;16:36–47 [CrossRef]
    [Google Scholar]
  57. Sivertsen A, Janice J, Pedersen T, Wagner TM, Hegstad J et al. The Enterococcus cassette chromosome, a genomic variation Enabler in enterococci. mSphere 2018;3:e00402–00418 [CrossRef]
    [Google Scholar]
  58. van Schaik W, Top J, Riley DR, Boekhorst J, Vrijenhoek JEP et al. Pyrosequencing-Based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. BMC Genomics 2010;11:239 [CrossRef]
    [Google Scholar]
  59. de Been M, van Schaik W, Cheng L, Corander J, Willems RJ. Recent recombination events in the core genome are associated with adaptive evolution in Enterococcus faecium. Genome Biol Evol 2013;5:1524–1535 [CrossRef]
    [Google Scholar]
  60. Zhang X, Top J, de Been M, Bierschenk D, Rogers M et al. Identification of a genetic determinant in clinical Enterococcus faecium strains that contributes to intestinal colonization during antibiotic treatment. J Infect Dis 2013;207:1780–1786 [CrossRef]
    [Google Scholar]
  61. Guzman Prieto AM, van Schaik W, Rogers MRC, Coque TM, Baquero F et al. Global emergence and dissemination of enterococci as nosocomial pathogens: attack of the clones?. Front Microbiol 2016;7:788 [CrossRef]
    [Google Scholar]
  62. Palmer KL, Gilmore MS. Multidrug-Resistant enterococci lack CRISPR-Cas. MBio 2010;1:e00227–10 [CrossRef]
    [Google Scholar]
  63. Gao W, Howden BP, Stinear TP. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr Opin Microbiol 2018;41:76–82 [CrossRef]
    [Google Scholar]
  64. Zhang S, Lebreton F, Mansfield MJ, Miyashita SI, Zhang J et al. Identification of a botulinum Neurotoxin-like toxin in a commensal strain of Enterococcus faecium. Cell Host Microbe 2018;23:169–176 [CrossRef]
    [Google Scholar]
  65. Abbo L, Shukla BS, Giles A, Aragon L, Jimenez A et al. Linezolid- and vancomycin-resistant Enterococcus faecium in solid organ transplant recipients: infection control and antimicrobial stewardship using whole genome sequencing. Clin Infect Dis 2019;69:259–265 [CrossRef]
    [Google Scholar]
  66. Mahony AA, Buultjens AH, Ballard SA, Grabsch EA, Xie S et al. Vancomycin-resistant Enterococcus faecium sequence type 796 - rapid international dissemination of a new epidemic clone. Antimicrob Resist Infect Control 2018;7:44 [CrossRef]
    [Google Scholar]
  67. Bi R, Qin T, Fan W, Ma P, Gu B. The emerging problem of linezolid-resistant enterococci. J Glob Antimicrob Resist 2018;13:11–19 [CrossRef]
    [Google Scholar]
  68. Rahim S, Pillai SK, Gold HS, Venkataraman L, Inglima K et al. Linezolid-Resistant, vancomycin-resistant Enterococcus faecium infection in patients without prior exposure to linezolid. Clin Infect Dis 2003;36:e146–e148 [CrossRef]
    [Google Scholar]
  69. Bonora MG, Ligozzi M, Luzzani A, Solbiati M, Stepan E et al. Emergence of linezolid resistance in Enterococcus faecium not dependent on linezolid treatment. Eur J Clin Microbiol Infect Dis 2006;25:197–198 [CrossRef]
    [Google Scholar]
  70. Lazaris A, Coleman DC, Kearns AM, Pichon B, Kinnevey PM et al. Novel multiresistance cfr plasmids in linezolid-resistant methicillin-resistant Staphylococcus epidermidis and vancomycin-resistant Enterococcus faecium (VRE) from a hospital outbreak: co-location of cfr and optrA in VRE. J Antimicrob Chemother 2017;72:3252–3257 [CrossRef]
    [Google Scholar]
  71. Bender JK, Fleige C, Lange D, Klare I, Werner G. Rapid emergence of highly variable and transferable oxazolidinone and phenicol resistance gene optrA in German Enterococcus spp. clinical isolates. Int J Antimicrob Agents 2018;52:819–827 [CrossRef]
    [Google Scholar]
  72. Sadowy E. Linezolid resistance genes and genetic elements enhancing their dissemination in enterococci and streptococci. Plasmid 2018;99:89–98 [CrossRef]
    [Google Scholar]
  73. Munoz-Price LS, Lolans K, Quinn JP. Emergence of resistance to daptomycin during treatment of vancomycin-resistant Enterococcus faecalis infection. Clinical Infectious Diseases 2005;41:565–566 [CrossRef]
    [Google Scholar]
  74. Kelesidis T, Humphries R, Uslan DZ, Pegues D. De novo daptomycin-nonsusceptible enterococcal infections. Emerg Infect Dis 2012;18:674–676 [CrossRef]
    [Google Scholar]
  75. Holmes NE, Ballard SA, Lam MMC, Johnson PDR, Grayson ML et al. Genomic analysis of teicoplanin resistance emerging during treatment of vanB vancomycin-resistant Enterococcus faecium infections in solid organ transplant recipients including donor-derived cases. J Antimicrob Chemother 2013;68:2134–2139 [CrossRef]
    [Google Scholar]
  76. Pidot SJ, Gao W, Buultjens AH, Monk IR, Guerillot R et al. Increasing tolerance of hospital Enterococcus faecium to handwash alcohols. Sci Transl Med 2018;10:eaar6115 [CrossRef]
    [Google Scholar]
  77. Bhardwaj P, Hans A, Ruikar K, Guan Z, Palmer KL. Reduced chlorhexidine and daptomycin susceptibility in vancomycin-resistant Enterococcus faecium after serial chlorhexidine exposure. Antimicrob Agents Chemother 2018;62:e01235–17 [CrossRef]
    [Google Scholar]
  78. Prieto AMG, Wijngaarden J, Braat JC, Rogers MRC, Majoor E et al. The two-component system ChtRS contributes to chlorhexidine tolerance in Enterococcus faecium. Antimicrob Agents Chemother 2017;61:e02122–16
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000283
Loading
/content/journal/mgen/10.1099/mgen.0.000283
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error