1887

Abstract

Reference and type strains of well-known bacteria have been a cornerstone of microbiology research for decades. The sharing of well-characterized isolates among laboratories has run in parallel with research efforts and enhanced the reproducibility of experiments, leading to a wealth of knowledge about trait variation in different species and the underlying genetics. strain NCTC 11168, deposited at the National Collection of Type Cultures in 1977, has been adopted widely as a reference strain by researchers worldwide and was the first for which the complete genome was published (in 2000). In this study, we collected 23 . NCTC 11168 reference isolates from laboratories across the UK and compared variation in simple laboratory phenotypes with genetic variation in sequenced genomes. Putatively identical isolates, identified previously to have aberrant phenotypes, varied by up to 281 SNPs (in 15 genes) compared to the most recent reference strain. Isolates also display considerable phenotype variation in motility, morphology, growth at 37 °C, invasion of chicken and human cell lines, and susceptibility to ampicillin. This study provides evidence of ongoing evolutionary change among isolates as they are cultured in different laboratories and highlights the need for careful consideration of genetic variation within laboratory reference strains. This article contains data hosted by Microreact.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000279
2019-07-01
2019-08-24
Loading full text...

Full text loading...

/deliver/fulltext/mgen/5/7/mgen000279.html?itemId=/content/journal/mgen/10.1099/mgen.0.000279&mimeType=html&fmt=ahah

References

  1. Méric G, Hitchings MD, Pascoe B, Sheppard SK. From Escherich to the Escherichia coli genome. Lancet Infect Dis 2016;16:634–636
    [Google Scholar]
  2. Skirrow MB. Campylobacter enteritis: a "new" disease. Br Med J 1977;2:9–11 [CrossRef]
    [Google Scholar]
  3. Kist M. [Who discovered Campylobacter jejuni/coli? A review of hitherto disregarded literature]. Zentralbl Bakteriol Mikrobiol Hyg A 1986;261:177–186
    [Google Scholar]
  4. Shulman ST, Friedmann HC, Sims RH. Theodor Escherich: the first pediatric infectious diseases physician?. Clin Infect Dis 2007;45:1025–1029
    [Google Scholar]
  5. Dunne KA, Chaudhuri RR, Rossiter AE, Beriotto I, Browning DF et al. Sequencing a piece of history: complete genome sequence of the original Escherichia coli strain. Microb Genom 2017;3: [CrossRef]
    [Google Scholar]
  6. Altekruse SF, Swerdlow DL, Stern NJ. Microbial food borne pathogens. Campylobacter jejuni. Vet Clin North Am Food Anim Pract 1998;14:31–40
    [Google Scholar]
  7. Levy AJ. A gastro-enteritis cutbreak probably due to a bovine strain of vibrio. Yale J Biol Med 1946;18:243–258
    [Google Scholar]
  8. Jones FS, Orcutt M, Little RB. Vibrios (Vibrio Jejuni, n.sp.) associated with intestinal disorders of cows and calves. J Exp Med 1931;53:853–863 [CrossRef]
    [Google Scholar]
  9. Smith T, Taylor MS. Some morphological and biological characters of the spirilla (vibrio fetus, n. sp.) associated with disease of the fetal membranes in cattle. J Exp Med 1919;30:299–311
    [Google Scholar]
  10. Butzler JP. Campylobacter, from obscurity to celebrity. Clin Microbiol Infect 2004;10:868–876
    [Google Scholar]
  11. Dekeyser P, Gossuin-Detrain M, Butzler JP, Sternon J. Acute enteritis due to related vibrio: first positive stool cultures. J Infect Dis 1972;125:390–392
    [Google Scholar]
  12. Butzler JP, Dekeyser P, Detrain M, Dehaen F. Related vibrio in stools. J Pediatr 1973;82:493–495
    [Google Scholar]
  13. Cadranel S, Rodesch P, Butzler JP, Dekeyser P. Enteritis due to "related vibrio" in children. Am J Dis Child 1973;126:152–155
    [Google Scholar]
  14. Sebald M, Veron M. [Base dna content and classification of vibrios]. Ann Inst Pasteur 1963;105:897–910
    [Google Scholar]
  15. Veron M, Chatelain R. Taxonomic study of the genus campylobacter sebald and veron and designation of the neotype strain for the type species, Campylobacter fetus (Smith and Taylor) sebald and veron. Int J Syst Bacteriol 1973;23:122–134
    [Google Scholar]
  16. Skirrow MB, Benjamin J. Differentiation of enteropathogenic Campylobacter. J Clin Pathol 1980;33:1122
    [Google Scholar]
  17. Skirrow MB, Benjamin J. ‘1001’ Campylobacters: cultural characteristics of intestinal campylobacters from man and animals. J Hyg 1980;85:427–442
    [Google Scholar]
  18. Woodward DL, Rodgers FG. Identification of Campylobacter heat-stable and heat-labile antigens by combining the Penner and Lior serotyping schemes. J Clin Microbiol 2002;40:741–745
    [Google Scholar]
  19. Taylor DE, Chang N. Immunoblot and enzyme-linked immunosorbent assays of Campylobacter major outer-membrane protein and application to the differentiation of Campylobacter species. Mol Cell Probes 1987;1:261–274
    [Google Scholar]
  20. Lior H. New, extended biotyping scheme for Campylobacter jejuni, Campylobacter coli, and "Campylobacter laridis". J Clin Microbiol 1984;20:636–640
    [Google Scholar]
  21. Taylor DE, Eaton M, Yan W, Chang N. Genome maps of Campylobacter jejuni and Campylobacter coli. J Bacteriol 1992;174:2332–2337
    [Google Scholar]
  22. Newnham E, Chang N, Taylor DE. Expanded genomic map of Campylobacter jejuni UA580 and localization of 23S ribosomal rRNA genes by I- CeuI restriction endonuclease digestion. FEMS Microbiol Lett 1996;142:223–229
    [Google Scholar]
  23. Karlyshev AV, Henderson J, Ketley JM, Wren BW. An improved physical and genetic map of Campylobacter jejuni NCTC 11168 (UA580). Microbiology 1998;144:503–508 [CrossRef]
    [Google Scholar]
  24. Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C et al. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 2000;403:665–668
    [Google Scholar]
  25. Revez J, Schott T, Rossi M, Hänninen ML. Complete genome sequence of a variant of Campylobacter jejuni NCTC 11168. J Bacteriol 2012;194:6298–6299
    [Google Scholar]
  26. Gundogdu O, Bentley SD, Holden MT, Parkhill J, Dorrell N et al. Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics 2007;8:162
    [Google Scholar]
  27. Dorrell N, Mangan JA, Laing KG, Hinds J, Linton D et al. Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res 2001;11:1706–1715
    [Google Scholar]
  28. Gaynor EC, Cawthraw S, Manning G, MacKichan JK, Falkow S et al. The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J Bacteriol 2004;186:503–517
    [Google Scholar]
  29. Cooper KK, Cooper MA, Zuccolo A, Joens LA. Re-sequencing of a virulent strain of Campylobacter jejuni NCTC11168 reveals potential virulence factors. Res Microbiol 2013;164:6–11
    [Google Scholar]
  30. Szymanski CM, Logan SM, Linton D, Wren BW. Campylobacter ‒ a tale of two protein glycosylation systems. Trends Microbiol 2003;11:233–238
    [Google Scholar]
  31. Thibault P, Logan SM, Kelly JF, Brisson J-R, Ewing CP et al. Identification of the Carbohydrate Moieties and Glycosylation Motifs in Campylobacter jejuni Flagellin. J Biol Chem 2001;276:34862–34870
    [Google Scholar]
  32. Linton D, Karlyshev A, Hitchen PG, Morris HR, Dell A et al. Multiple N-acetyl neuraminic acid synthetase (neuB) genes in Campylobacter jejuni: identification and characterization of the gene involved in sialylation of lipo-oligosaccharide. Mol Microbiol 2000;35:1120–1134
    [Google Scholar]
  33. Guerry P, Ewing CP, Hickey TE, Prendergast MM, Moran AP. Sialylation of lipooligosaccharide cores affects immunogenicity and serum resistance of Campylobacter jejuni. Infect Immun 2000;68:6656–6662
    [Google Scholar]
  34. Howard SL, Jagannathan A, Soo EC, JPM H, Aubry AJ et al. Campylobacter jejuni glycosylation island important in cell charge, legionaminic acid biosynthesis, and colonization of chickens. Infect Immun 2009;77:2544–2556
    [Google Scholar]
  35. Linton D, Karlyshev AV, Wren BW. Deciphering Campylobacter jejuni cell surface interactions from the genome sequence. Curr Opin Microbiol 2001;4:35–40 [CrossRef]
    [Google Scholar]
  36. Jones MA, Marston KL, Woodall CA, Maskell DJ, Linton D et al. Adaptation of Campylobacter jejuni NCTC11168 to high-level colonization of the avian gastrointestinal tract. Infect Immun 2004;72:3769–3776
    [Google Scholar]
  37. Carrillo CD, Taboada E, Nash JHE, Lanthier P, Kelly J et al. Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. J Biol Chem 2004;279:20327–20338
    [Google Scholar]
  38. Perera VN, Nachamkin I, Ung H, Patterson JH, McConville MJ et al. Molecular mimicry in Campylobacter jejuni : role of the lipo-oligosaccharide core oligosaccharide in inducing anti-ganglioside antibodies. FEMS Immunol Med Microbiol 2007;50:27–36
    [Google Scholar]
  39. Holmes K, Mulholland F, Pearson BM, Pin C, McNicholl-Kennedy J et al. Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. Microbiology 2005;151:243–257
    [Google Scholar]
  40. Palyada K, Threadgill D, Stintzi A. Iron acquisition and regulation in Campylobacter jejuni. J Bacteriol 2004;186:4714–4729
    [Google Scholar]
  41. Xu F, Zeng X, Haigh RD, Ketley JM, Lin J. Identification and characterization of a new ferric enterobactin receptor, CfrB, in Campylobacter. J Bacteriol 2010;192:4425–4435
    [Google Scholar]
  42. Nielsen LN, Luijkx TA, Vegge CS, Johnsen CK, Nuijten P et al. Identification of immunogenic and virulence-associated Campylobacter jejuni proteins. Clin Vaccine Immunol 2012;19:113–119
    [Google Scholar]
  43. Mandal RK, Jiang T, Kwon YM. Essential genome of Campylobacter jejuni. BMC Genomics 2017;18:616
    [Google Scholar]
  44. de Vries SP, Gupta S, Baig A, Wright E, Wedley A et al. Genome-wide fitness analyses of the foodborne pathogen Campylobacter jejuni in in vitro and in vivo models. Sci Rep 2017;7:1251
    [Google Scholar]
  45. Wright JA, Grant AJ, Hurd D, Harrison M, Guccione EJ et al. Metabolite and transcriptome analysis of Campylobacter jejuni in vitro growth reveals a stationary-phase physiological switch. Microbiology 2009;155:80–94
    [Google Scholar]
  46. Guccione EJ, Kendall JJ, Hitchcock A, Garg N, White MA et al. Transcriptome and proteome dynamics in chemostat culture reveal how Campylobacter jejuni modulates metabolism, stress responses and virulence factors upon changes in oxygen availability. Environ Microbiol 2017;19:4326–4348
    [Google Scholar]
  47. Kalmokoff M, Lanthier P, Tremblay T-L, Foss M, Lau PC et al. Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bacteriol 2006;188:4312–4320
    [Google Scholar]
  48. Reuter M, Mallett A, Pearson BM, van Vliet AHM. Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Appl Environ Microbiol 2010;76:2122–2128
    [Google Scholar]
  49. Brown HL, Hanman K, Reuter M, Betts RP, van Vliet AHM. Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment. Front Microbiol 2015;6:699
    [Google Scholar]
  50. Pascoe B, Méric G, Murray S, Yahara K, Mageiros L et al. Enhanced biofilm formation and multi-host transmission evolve from divergent genetic backgrounds in Campylobacter jejuni. Environ Microbiol 2015;17:4779–4789
    [Google Scholar]
  51. Oh E, Andrews KJ, Jeon B. Enhanced biofilm formation by ferrous and ferric iron through oxidative stress in Campylobacter jejuni. Front Microbiol 2018;9:1204
    [Google Scholar]
  52. Karlyshev AV, Linton D, Gregson NA, Lastovica AJ, Wren BW. Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity. Mol Microbiol 2000;35:529–541 [CrossRef]
    [Google Scholar]
  53. Atack JM, Kelly DJ. Oxidative stress in Campylobacter jejuni : responses, resistance and regulation. Future Microbiol 2009;4:677–690
    [Google Scholar]
  54. Kendall JJ, Barrero-Tobon AM, Hendrixson DR, Kelly DJ. Hemerythrins in the microaerophilic bacterium C ampylobacter jejuni help protect key iron-sulphur cluster enzymes from oxidative damage. Environ Microbiol 2014;16:1105–1121
    [Google Scholar]
  55. Thomas DK, Lone AG, Selinger LB, Taboada EN, Uwiera RR et al. Comparative variation within the genome of Campylobacter jejuni NCTC 11168 in human and murine hosts. PLoS One 2014;9:e88229 [CrossRef]
    [Google Scholar]
  56. Yahara K, Méric G, Taylor AJ, de Vries SPW, Murray S et al. Genome-wide association of functional traits linked with Campylobacter jejuni survival from farm to fork. Environ Microbiol 2017;19:361–380 [CrossRef]
    [Google Scholar]
  57. Sheppard SK, Guttman DS, Fitzgerald JR. Population genomics of bacterial host adaptation. Nat Rev Genet 2018;19:549–565
    [Google Scholar]
  58. Sleight SC, Orlic C, Schneider D, Lenski RE. Genetic basis of evolutionary adaptation by Escherichia coli to stressful cycles of freezing, thawing and growth. Genetics 2008;180:431–443
    [Google Scholar]
  59. Sproston EL, Wimalarathna HML, Sheppard SK. Trends in fluoroquinolone resistance in Campylobacter. Microb Genom 2018;4: [CrossRef]
    [Google Scholar]
  60. Viana D, Comos M, McAdam PR, Ward MJ, Selva L et al. A single natural nucleotide mutation alters bacterial pathogen host tropism. Nat Genet 2015;47:361–366
    [Google Scholar]
  61. Jolley KA, Maiden MCJ. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010;11:595
    [Google Scholar]
  62. Sheppard SK, Jolley KA, Maiden MCJ. A gene-by-gene approach to bacterial population genomics: whole genome MLST of Campylobacter. Genes 2012;3:261–277 [CrossRef]
    [Google Scholar]
  63. Sheppard SK, Didelot X, Jolley KA, Darling AE, Pascoe B et al. Progressive genome-wide introgression in agricultural Campylobacter coli. Mol Ecol 2013;22:1051–1064
    [Google Scholar]
  64. Sheppard SK, Didelot X, Meric G, Torralbo A, Jolley KA et al. Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proc Natl Acad Sci USA 2013;110:11923–11927
    [Google Scholar]
  65. Sheppard SK, Cheng L, Méric G, De Haan CPA, Llarena AK et al. Cryptic ecology among host generalist Campylobacter jejuni in domestic animals. Mol Ecol 2014
    [Google Scholar]
  66. Méric G, Yahara K, Mageiros L, Pascoe B, Maiden MCJ et al. A reference pan-genome approach to comparative bacterial genomics: identification of novel epidemiological markers in pathogenic Campylobacter. PLoS One 2014;9:e92798 [CrossRef]
    [Google Scholar]
  67. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410
    [Google Scholar]
  68. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772–780
    [Google Scholar]
  69. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010;5:e9490 [CrossRef]
    [Google Scholar]
  70. Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol 2015;11:e1004041 [CrossRef]
    [Google Scholar]
  71. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015;43:e15–e15
    [Google Scholar]
  72. Seemann T. SNIPPY: Fast bacterial variant calling from NGS reads. 2015
  73. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069
    [Google Scholar]
  74. Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J et al. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods 2018;15:475–476
    [Google Scholar]
  75. Connor TR, Loman NJ, Thompson S, Smith A, Southgate J et al. CLIMB (the cloud infrastructure for microbial bioinformatics): an online resource for the medical microbiology community. Microb Genom 2016;2: [CrossRef]
    [Google Scholar]
  76. Welch BL. On the comparison of several mean values: an alternative approach. Biometrika 1951;38:330
    [Google Scholar]
  77. Guerry P, Doig P, Alm RA, Burr DH, Kinsella N et al. Identification and characterization of genes required for post-translational modification of Campylobacter coli VC167 flagellin. Mol Microbiol 1996;19:369–378
    [Google Scholar]
  78. Golden NJ, Acheson DWK. Identification of motility and autoagglutination Campylobacter jejuni mutants by random transposon mutagenesis. Infect Immun 2002;70:1761–1771
    [Google Scholar]
  79. Culebro A, Revez J, Pascoe B, Friedmann Y, Hitchings MD et al. Large sequence diversity within the biosynthesis locus and common biochemical features of Campylobacter coli lipooligosaccharides. J Bacteriol 2016;198:2829–2840
    [Google Scholar]
  80. Guerry P, Ewing CP, Schirm M, Lorenzo M, Kelly J et al. Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol Microbiol 2006;60:299–311
    [Google Scholar]
  81. Wu Z, Periaswamy B, Sahin O, Yaeger M, Plummer P et al. Point mutations in the major outer membrane protein drive hypervirulence of a rapidly expanding clone of Campylobacter jejuni. Proc Natl Acad Sci 2016;113:10690–10695
    [Google Scholar]
  82. Parker CT, Gilbert M, Yuki N, Endtz HP, Mandrell RE. Characterization of lipooligosaccharide-biosynthetic loci of Campylobacter jejuni reveals new lipooligosaccharide classes: evidence of mosaic organizations. J Bacteriol 2008;190:5681–5689
    [Google Scholar]
  83. Backert S, Hofreuter D. Molecular methods to investigate adhesion, transmigration, invasion and intracellular survival of the foodborne pathogen Campylobacter jejuni. J Microbiol Methods 2013;95:8–23
    [Google Scholar]
  84. Karlyshev A, Linton D, Gregson NA, Wren BW. A novel paralogous gene family involved in phase-variable flagella-mediated motility in Campylobacter jejuni. Microbiology 2002;148:473–480
    [Google Scholar]
  85. Hendrixson DR, DiRita VJ. Transcription of sigma54-dependent but not sigma28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol Microbiol 2003;50:687–702
    [Google Scholar]
  86. Novik V, Hofreuter D, Galan JE. Identification of Campylobacter jejuni genes involved in its interaction with epithelial cells. Infect Immun 2010;78:3540–3553
    [Google Scholar]
  87. Reid AN, Pandey R, Palyada K, Naikare H, Stintzi A. Identification of Campylobacter jejuni genes involved in the response to acidic pH and stomach transit. Appl Environ Microbiol 2008;74:1583–1597
    [Google Scholar]
  88. Hitchen P, Brzostek J, Panico M, Butler JA, Morris HR et al. Modification of the Campylobacter jejuni flagellin glycan by the product of the Cj1295 homopolymeric-tract-containing gene. Microbiology 2010;156:1953–1962
    [Google Scholar]
  89. Aidley J, Rajopadhye S, Akinyemi NM, Lango-Scholey L, Bayliss CD et al. Nonselective bottlenecks control the divergence and diversification of phase-variable bacterial populations. MBio 2017;8:
    [Google Scholar]
  90. Aidley J, Wanford JJ, Green LR, Sheppard SK, Bayliss CD. PhasomeIt: an ‘omics’ approach to cataloguing the potential breadth of phase variation in the genus Campylobacter. Microb Genom 2018;4: [CrossRef]
    [Google Scholar]
  91. Kearns DB. A field guide to bacterial swarming motility. Nat Rev Microbiol 2010;8:634–644
    [Google Scholar]
  92. Adler J, Templeton B. The effect of environmental conditions on the motility of Escherichia coli. J Gen Microbiol 1967;46:175–184
    [Google Scholar]
  93. Navarro Llorens JM, Tormo A, Martínez-García E. Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 2010;34:476–495
    [Google Scholar]
  94. Rendueles O, Velicer GJ. Evolution by flight and fight: diverse mechanisms of adaptation by actively motile microbes. Isme J 2016;11:555–568
    [Google Scholar]
  95. Konkel ME, Klena JD, Rivera-Amill V, Monteville MR, Biswas D et al. Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J Bacteriol 2004;186:3296–3303
    [Google Scholar]
  96. Guerry P. Campylobacter flagella: not just for motility. Trends Microbiol 2007;15:456–461
    [Google Scholar]
  97. Revez J, Schott T, Llarena AK, Rossi M, Hänninen ML. Genetic heterogeneity of Campylobacter jejuni NCTC 11168 upon human infection. Infect Genet Evol 2013;16:305–309
    [Google Scholar]
  98. Clinical and Laboratory Standards Performance Standards for Antimicrobial Susceptibility Testing An informational supplement for global application developed through the Clinical and Laboratory Standards Institute, CLSI Doc M100-S16. Wayne, PA: CLSI;
    [Google Scholar]
  99. Draper JL, Hansen LM, Bernick DL, Abedrabbo S, Underwood JG et al. Fallacy of the Unique genome: sequence diversity within Single Helicobacter pylori Strains. MBio 2017;8:
    [Google Scholar]
  100. Pascoe B, Méric G, Yahara K, Wimalarathna H, Murray S et al. Local genes for local bacteria: Evidence of allopatry in the genomes of transatlantic Campylobacter populations. Mol Ecol 2017;26:4497–4508
    [Google Scholar]
  101. Champion OL, Gaunt MW, Gundogdu O, Elmi A, Witney AA et al. Comparative phylogenomics of the food-borne pathogen Campylobacter jejuni reveals genetic markers predictive of infection source. Proc Natl Acad Sci USA 2005;102:16043–16048 [CrossRef]
    [Google Scholar]
  102. Sheppard SK, Dallas JF, Wilson DJ, Strachan NJC, McCarthy ND et al. Evolution of an agriculture-associated disease causing Campylobacter coli clade: evidence from national surveillance data in Scotland. PLoS One 2010;5:e15708 [CrossRef]
    [Google Scholar]
  103. Sheppard SK, Colles FM, McCarthy ND, Strachan NJC, Ogden ID et al. Niche segregation and genetic structure of Campylobacter jejuni populations from wild and agricultural host species. Mol Ecol 2011;20:3484–3490 [CrossRef]
    [Google Scholar]
  104. Méric G, McNally A, Pessia A, Mourkas E, Pascoe B et al. Convergent Amino Acid Signatures in Polyphyletic Campylobacter jejuni subpopulations suggest human niche tropism. Genome Biol Evol 2018;10:763–774 [CrossRef]
    [Google Scholar]
  105. Woodcock DJ, Krusche P, Strachan NJC, Forbes KJ, Cohan FM et al. Genomic plasticity and rapid host switching can promote the evolution of generalism: a case study in the zoonotic pathogen Campylobacter. Sci Rep 2017;7: [CrossRef]
    [Google Scholar]
  106. Sheppard SK, McCarthy ND, Falush D, Maiden MCJ. Convergence of Campylobacter species: implications for bacterial evolution. Science 2008;320:237–239 [CrossRef]
    [Google Scholar]
  107. Sheppard SK, McCarthy ND, Jolley KA, Maiden MCJ. Introgression in the genus Campylobacter: generation and spread of mosaic alleles. Microbiology 2011;157:1066–1074 [CrossRef]
    [Google Scholar]
  108. Dearlove BL, Cody AJ, Pascoe B, Méric G, Wilson DJ et al. Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections. Isme J 2016;10:721–729 [CrossRef]
    [Google Scholar]
  109. Baily JL, Méric G, Bayliss S, Foster G, Moss SE et al. Evidence of land-sea transfer of the zoonotic pathogen Campylobacter to a wildlife marine sentinel species. Mol Ecol 2015;24:208–221 [CrossRef]
    [Google Scholar]
  110. Thépault A, Méric G, Rivoal K, Pascoe B, Mageiros L et al. Genome-wide identification of host-segregating epidemiological markers for source attribution in Campylobacter jejuni. Appl Environ Microbiol 2017;83: [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000279
Loading
/content/journal/mgen/10.1099/mgen.0.000279
Loading

Data & Media loading...

Supplementary material 1

PDF

Supplementary material 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error