1887

Abstract

The type II secretion system (T2SS) plays a major role in promoting bacterial survival in the environment and in human hosts. One of the best characterized T2SS is that of Legionella pneumophila , the agent of Legionnaires’ disease. Secreting at least 25 proteins, including degradative enzymes, eukaryotic-like proteins and novel effectors, this T2SS contributes to the ability of L. pneumophila to grow at low temperatures, infect amoebal and macrophage hosts, damage lung tissue, evade the immune system, and undergo sliding motility. The genes encoding the T2SS are conserved across the genus Legionella , which includes 62 species and >30 pathogens in addition to L. pneumophila . The vast majority of effectors associated with L. pneumophila are shared by a large number of Legionella species, hinting at a critical role for them in the ecology of Legionella as a whole. However, no other species has the same repertoire as L. pneumophila , with, as a general rule, phylogenetically more closely related species sharing similar sets of effectors. T2SS effectors that are involved in infection of a eukaryotic host(s) are more prevalent throughout Legionella , indicating that they are under stronger selective pressure. The Legionella T2SS apparatus is closest to that of Aquicella (another parasite of amoebae), and a significant number of L. pneumophila effectors have their closest homologues in Aquicella . Thus, the T2SS of L. pneumophila probably originated within the order Legionellales , with some of its effectors having arisen within that Aquicella -like progenitor, while other effectors derived from the amoebal host, mimiviruses, fungi and less closely related bacteria.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000273
2019-06-05
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/mgen/5/6/mgen000273.html?itemId=/content/journal/mgen/10.1099/mgen.0.000273&mimeType=html&fmt=ahah

References

  1. Fraser DW, Tsai TR, Orenstein W, Parkin WE, Beecham HJ et al. Legionnaires' disease: description of an epidemic of pneumonia. N Engl J Med 1977;297:1189–1197 [CrossRef]
    [Google Scholar]
  2. McDade JE, Shepard CC, Fraser DW, Tsai TR, Redus MA et al. Legionnaires' disease: isolation of a bacterium and demonstration of its role in other respiratory disease. N Engl J Med 1977;297:1197–1203 [CrossRef]
    [Google Scholar]
  3. Duron O, Doublet P, Vavre F, Bouchon D. The importance of revisiting Legionellales diversity. Trends Parasitol 2018;34:1027–1037 [CrossRef]
    [Google Scholar]
  4. Alary M, Joly JR. Risk factors for contamination of domestic hot water systems by legionellae. Appl Environ Microbiol 1991;57:2360–2367
    [Google Scholar]
  5. Fliermans CB, Cherry WB, Orrison LH, Smith SJ, Tison DL et al. Ecological distribution of Legionella pneumophila. Appl Environ Microbiol 1981;41:9–16
    [Google Scholar]
  6. Mouchtouri V, Velonakis E, Tsakalof A, Kapoula C, Goutziana G et al. Risk factors for contamination of hotel water distribution systems by Legionella species. Appl Environ Microbiol 2007;73:1489–1492 [CrossRef]
    [Google Scholar]
  7. Ashbolt NJ. Environmental (Saprozoic) pathogens of engineered water systems: understanding their ecology for risk assessment and management. Pathogens 2015;4:390–405 [CrossRef]
    [Google Scholar]
  8. Palmer A, Painter J, Hassler H, Richards VP, Bruce T et al. Legionella clemsonensis sp. nov.: a green fluorescing Legionella strain from a patient with pneumonia. Microbiol Immunol 2016;60:694–701 [CrossRef]
    [Google Scholar]
  9. Relich RF, Schmitt BH, Raposo H, Barker L, Blosser SJ et al. Legionella indianapolisensis sp. nov., isolated from a patient with pulmonary abscess. Int J Infect Dis 2018;69:26–28 [CrossRef]
    [Google Scholar]
  10. Campocasso A, Boughalmi M, Fournous G, Raoult D, La Scola B. Legionella tunisiensis sp. nov. and Legionella massiliensis sp. nov., isolated from environmental water samples. Int J Syst Evol Microbiol 2012;62:3003–3006 [CrossRef]
    [Google Scholar]
  11. Rizzardi K, Winiecka-Krusnell J, Ramliden M, Alm E, Andersson S et al. Legionella norrlandica sp. nov., isolated from the biopurification systems of wood processing plants. Int J Syst Evol Microbiol 2015;65:598–603 [CrossRef]
    [Google Scholar]
  12. Bajrai LH, Azhar EI, Yasir M, Jardot P, Barrassi L et al. Legionella saoudiensis sp. nov., isolated from a sewage water sample. Int J Syst Evol Microbiol 2016;66:4367–4371 [CrossRef]
    [Google Scholar]
  13. Ishizaki N, Sogawa K, Inoue H, Agata K, Edagawa A et al. Legionella thermalis sp. nov., isolated from hot spring water in Tokyo, Japan. Microbiol Immunol 2016;60:203–208 [CrossRef]
    [Google Scholar]
  14. Cianciotto NP, Hilbi H, Buchrieser C. Legionnaires' Disease The Prokaryotes - Human Microbiology, 4th edition. New York, NY: Springer; 2013; pp147–217
    [Google Scholar]
  15. Abu Kwaik Y, Gao LY, Stone BJ, Venkataraman C, Harb OS. Invasion of protozoa by Legionella pneumophila and its role in bacterial ecology and pathogenesis. Appl Environ Microbiol 1998;64:3127–3133
    [Google Scholar]
  16. Adeleke A, Pruckler J, Benson R, Rowbotham T, Halablab M et al. Legionella-like amebal pathogens-phylogenetic status and possible role in respiratory disease. Emerg Infect Dis 1996;2:225–230 [CrossRef]
    [Google Scholar]
  17. Wullings BA, van der Kooij D. Occurrence and genetic diversity of uncultured Legionella spp. in drinking water treated at temperatures below 15 degrees C. Appl Environ Microbiol 2006;72:157–166 [CrossRef]
    [Google Scholar]
  18. Gomaa F, Gersh M, Cavanaugh CM. Diverse Legionella-Like bacteria associated with testate amoebae of the genus Arcella (Arcellinida: Amoebozoa). J Eukaryot Microbiol 2018;65:661–668 [CrossRef]
    [Google Scholar]
  19. Diederen BMW. Legionella spp. and Legionnaires' disease. J Infect 2008;56:1–12 [CrossRef]
    [Google Scholar]
  20. Boamah DK, Zhou G, Ensminger AW, O'Connor TJ, Hosts FM. From many hosts, one accidental pathogen: the diverse protozoan hosts of Legionella. Front Cell Infect Microbiol 2017;7:477 [CrossRef]
    [Google Scholar]
  21. Anand CM, Skinner AR, Malic A, Kurtz JB. Interaction of L. pneumophilia and a free living amoeba (Acanthamoeba palestinensis). J Hyg 1983;91:167–178 [CrossRef]
    [Google Scholar]
  22. Rowbotham TJ. Current views on the relationships between amoebae, legionellae and man. Isr J Med Sci 1986;22:678–689
    [Google Scholar]
  23. Declerck P, Behets J, Delaedt Y, Margineanu A, Lammertyn E et al. Impact of non-Legionella bacteria on the uptake and intracellular replication of Legionella pneumophila in Acanthamoeba castellanii and Naegleria lovaniensis. Microb Ecol 2005;50:536–549 [CrossRef]
    [Google Scholar]
  24. Thomas V, Herrera-Rimann K, Blanc DS, Greub G. Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl Environ Microbiol 2006;72:2428–2438 [CrossRef]
    [Google Scholar]
  25. Tyson JY, Pearce MM, Vargas P, Bagchi S, Mulhern BJ et al. Multiple Legionella pneumophila type II secretion substrates, including a novel protein, contribute to differential infection of the amoebae Acanthamoeba castellanii, Hartmannella vermiformis, and Naegleria lovaniensis. Infect Immun 2013;81:1399–1410 [CrossRef]
    [Google Scholar]
  26. Winn WC, Jr. Legionnaires disease: historical perspective. Clin Microbiol Rev 1988;1:60–81 [CrossRef]
    [Google Scholar]
  27. Gao LY, Stone BJ, Brieland JK, Abu Kwaik Y. Different fates of Legionella pneumophila PMI and mil mutants within macrophages and alveolar epithelial cells. Microb Pathog 1998;25:291–306 [CrossRef]
    [Google Scholar]
  28. Maruta K, Miyamoto H, Hamada T, Ogawa M, Taniguchi H et al. Entry and intracellular growth of Legionella dumoffii in alveolar epithelial cells. Am J Respir Crit Care Med 1998;157:1967–1974 [CrossRef]
    [Google Scholar]
  29. Isberg RR, O'Connor TJ, Heidtman M. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 2009;7:13–24 [CrossRef]
    [Google Scholar]
  30. Finsel I, Hilbi H. Formation of a pathogen vacuole according to Legionella pneumophila: how to kill one bird with many stones. Cell Microbiol 2015;17:935–950 [CrossRef]
    [Google Scholar]
  31. Bandyopadhyay P, Liu S, Gabbai CB, Venitelli Z, Steinman HM. Environmental mimics and the Lvh type IVA secretion system contribute to virulence-related phenotypes of Legionella pneumophila. Infect Immun 2007;75:723–735 [CrossRef]
    [Google Scholar]
  32. Bandyopadhyay P, Lang EAS, Rasaputra KS, Steinman HM. Implication of the VirD4 coupling protein of the Lvh type 4 secretion system in virulence phenotypes of Legionella pneumophila. J Bacteriol 2013;195:3468–3475 [CrossRef]
    [Google Scholar]
  33. Fuche F, Vianney A, Andrea C, Doublet P, Gilbert C. Functional type 1 secretion system involved in Legionella pneumophila virulence. J. Bacteriol. 2015;197:563–571 [CrossRef]
    [Google Scholar]
  34. Allard KA, Dao J, Sanjeevaiah P, McCoy-Simandle K, Chatfield CH et al. Purification of Legiobactin and Importance of This Siderophore in Lung Infection by Legionella pneumophila. Infection and Immunity 2009;77:2887–2895 [CrossRef]
    [Google Scholar]
  35. Burnside DM, Wu Y, Shafaie S, Cianciotto NP. The Legionella pneumophila siderophore legiobactin is a polycarboxylate that is identical in structure to rhizoferrin. Infect Immun 2015;83:3937–3945 [CrossRef]
    [Google Scholar]
  36. Chatfield CH, Cianciotto NP. The secreted pyomelanin pigment of Legionella pneumophila confers ferric reductase activity. Infect Immun 2007;75:4062–4070 [CrossRef]
    [Google Scholar]
  37. Zheng H, Chatfield CH, Liles MR, Cianciotto NP. Secreted pyomelanin of Legionella pneumophila promotes bacterial iron uptake and growth under iron-limiting conditions. Infect Immun 2013;81:4182–4191 [CrossRef]
    [Google Scholar]
  38. Hales LM, Shuman HA. Legionella pneumophila contains a type II general secretion pathway required for growth in amoebae as well as for secretion of the Msp protease. Infect Immun 1999;67:3662–3666
    [Google Scholar]
  39. Rossier O, Cianciotto NP. Type II protein secretion is a subset of the PilD-dependent processes that facilitate intracellular infection by Legionella pneumophila. Infect Immun 2001;69:2092–2098 [CrossRef]
    [Google Scholar]
  40. Liles MR, Edelstein PH, Cianciotto NP. The prepilin peptidase is required for protein secretion by and the virulence of the intracellular pathogen Legionella pneumophila. Mol Microbiol 1999;31:959–970 [CrossRef]
    [Google Scholar]
  41. Söderberg MA, Dao J, Starkenburg SR, Cianciotto NP. Importance of type II secretion for survival of Legionella pneumophila in tap water and in amoebae at low temperatures. Appl Environ Microbiol 2008;74:5583–5588 [CrossRef]
    [Google Scholar]
  42. Rossier O, Starkenburg SR, Cianciotto NP. Legionella pneumophila type II protein secretion promotes virulence in the A/J mouse model of Legionnaires' disease pneumonia. Infect Immun 2004;72:310–321 [CrossRef]
    [Google Scholar]
  43. Cianciotto NP, White RC. Expanding role of type II secretion in bacterial pathogenesis and beyond. Infect Immun 2017;85: [CrossRef]
    [Google Scholar]
  44. Gu S, Shevchik VE, Shaw R, Pickersgill RW, Garnett JA. The role of intrinsic disorder and dynamics in the assembly and function of the type II secretion system. Biochimica et biophysica acta 1865;2017:1255–1266
    [Google Scholar]
  45. Rondelet A, Condemine G. Type II secretion: the substrates that won't go away. Res Microbiol 2013;164:556–561 [CrossRef]
    [Google Scholar]
  46. d'Enfert C, Reyss I, Wandersman C, Pugsley AP. Protein secretion by gram-negative bacteria. Characterization of two membrane proteins required for pullulanase secretion by Escherichia coli K-12. J Biol Chem 1989;264:17462–17468
    [Google Scholar]
  47. d'Enfert C, Ryter A, Pugsley AP. Cloning and expression in Escherichia coli of the Klebsiella pneumoniae genes for production, surface localization and secretion of the lipoprotein pullulanase. Embo J 1987;6:3531–3538 [CrossRef]
    [Google Scholar]
  48. Filloux A. The underlying mechanisms of type II protein secretion. Biochim Biophys Acta 2004;1694:163–179 [CrossRef]
    [Google Scholar]
  49. Voulhoux R, Ball G, Ize B, Vasil ML, Lazdunski A et al. Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J 2001;20:6735–6741 [CrossRef]
    [Google Scholar]
  50. Cianciotto NP. Type II secretion: a protein secretion system for all seasons. Trends Microbiol 2005;13:581–588 [CrossRef]
    [Google Scholar]
  51. Cianciotto NP. Many substrates and functions of type II secretion: lessons learned from Legionella pneumophila. Future Microbiol 2009;4:797–805 [CrossRef]
    [Google Scholar]
  52. Korotkov KV, Sandkvist M. Architecture, function, and substrates of the type II secretion system. EcoSal Plus 2019;8: [CrossRef]
    [Google Scholar]
  53. Abendroth J, Rice AE, McLuskey K, Bagdasarian M, Hol WGJ. The crystal structure of the periplasmic domain of the type II secretion system protein EpsM from Vibrio cholerae: the simplest version of the ferredoxin fold. J Mol Biol 2004;338:585–596 [CrossRef]
    [Google Scholar]
  54. Abendroth J, Kreger AC, Hol WGJ. The dimer formed by the periplasmic domain of EpsL from the Type 2 secretion system of Vibrio parahaemolyticus. J Struct Biol 2009;168:313–322 [CrossRef]
    [Google Scholar]
  55. Chen YL, Hu NT. Function-related positioning of the type II secretion ATPase of Xanthomonas campestris pv. campestris. PLoS One 2013;8:e59123 [CrossRef]
    [Google Scholar]
  56. Lu C, Korotkov KV, Hol WGJ. Crystal structure of the full-length ATPase GspE from the Vibrio vulnificus type II secretion system in complex with the cytoplasmic domain of GspL. J Struct Biol 2014;187:223–235 [CrossRef]
    [Google Scholar]
  57. Camberg JL, Johnson TL, Patrick M, Abendroth J, Hol WGJ et al. Synergistic stimulation of EpsE ATP hydrolysis by EpsL and acidic phospholipids. EMBO J 2007;26:19–27 [CrossRef]
    [Google Scholar]
  58. Hay ID, Belousoff MJ, Lithgow T. Structural basis of type 2 secretion system engagement between the inner and outer bacterial membranes. MBio 2017;8:e01344–17 [CrossRef]
    [Google Scholar]
  59. Yan Z, Yin M, Xu D, Zhu Y, Li X. Structural insights into the secretin translocation channel in the type II secretion system. Nat Struct Mol Biol 2017;24:177–183 [CrossRef]
    [Google Scholar]
  60. Cisneros DA, Bond PJ, Pugsley AP, Campos M, Francetic O. Minor pseudopilin self-assembly primes type II secretion pseudopilus elongation. EMBO J 2012;31:1041–1053 [CrossRef]
    [Google Scholar]
  61. Douzi B, Durand E, Bernard C, Alphonse S, Cambillau C et al. The XcpV/GspI pseudopilin has a central role in the assembly of a quaternary complex within the T2SS pseudopilus. J Biol Chem 2009;284:34580–34589 [CrossRef]
    [Google Scholar]
  62. Gray MD, Bagdasarian M, Hol WGJ, Sandkvist M. In vivo cross-linking of EpsG to EpsL suggests a role for EpsL as an ATPase-pseudopilin coupling protein in the Type II secretion system of Vibrio cholerae. Mol Microbiol 2011;79:786–798 [CrossRef]
    [Google Scholar]
  63. Peabody CR, Chung YJ, Yen MR, Vidal-Ingigliardi D, Pugsley AP et al. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 2003;149:3051–3072 [CrossRef]
    [Google Scholar]
  64. Korotkov KV, Sandkvist M, Hol WGJ. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol 2012;10:336–351 [CrossRef]
    [Google Scholar]
  65. Wang X, Pineau C, Gu S, Guschinskaya N, Pickersgill RW et al. Cysteine scanning mutagenesis and disulfide mapping analysis of arrangement of GspC and GspD protomers within the type 2 secretion system. J Biol Chem 2012;287:19082–19093 [CrossRef]
    [Google Scholar]
  66. Gérard-Vincent M, Robert V, Ball G, Bleves S, Michel GPF et al. Identification of XcpP domains that confer functionality and specificity to the Pseudomonas aeruginosa type II secretion apparatus. Mol Microbiol 2002;44:1651–1665 [CrossRef]
    [Google Scholar]
  67. Pineau C, Guschinskaya N, Robert X, Gouet P, Ballut L et al. Substrate recognition by the bacterial type II secretion system: more than a simple interaction. Mol Microbiol 2014;94:126–140 [CrossRef]
    [Google Scholar]
  68. Douzi B, Ball G, Cambillau C, Tegoni M, Voulhoux R. Deciphering the Xcp Pseudomonas aeruginosa type II secretion machinery through multiple interactions with substrates. J Biol Chem 2011;286:40792–40801 [CrossRef]
    [Google Scholar]
  69. Bouley J, Condemine G, Shevchik VE. The PDZ domain of OutC and the N-terminal region of OutD determine the secretion specificity of the type II out pathway of Erwinia chrysanthemi. J Mol Biol 2001;308:205–219 [CrossRef]
    [Google Scholar]
  70. Michel-Souzy S, Douzi B, Cadoret F, Raynaud C, Quinton L et al. Direct interactions between the secreted effector and the T2SS components GspL and GspM reveal a new effector-sensing step during type 2 secretion. J Biol Chem 2018;293:19441–19450 [CrossRef]
    [Google Scholar]
  71. Korotkov KV, Krumm B, Bagdasarian M, Hol WGJ. Structural and functional studies of EpsC, a crucial component of the type 2 secretion system from Vibrio cholerae. J Mol Biol 2006;363:311–321 [CrossRef]
    [Google Scholar]
  72. Bleves S, Gérard-Vincent M, Lazdunski A, Filloux A. Structure-function analysis of XcpP, a component involved in general secretory pathway-dependent protein secretion in Pseudomonas aeruginosa. J Bacteriol 1999;181:4012–4019
    [Google Scholar]
  73. Sahr T, Rusniok C, Dervins-Ravault D, Sismeiro O, Coppee J-Y et al. Deep sequencing defines the transcriptional map of L. pneumophila and identifies growth phase-dependent regulated ncRNAs implicated in virulence. RNA Biol 2012;9:503–519 [CrossRef]
    [Google Scholar]
  74. Guilvout I, Chami M, Engel A, Pugsley AP, Bayan N. Bacterial outer membrane secretin PulD assembles and inserts into the inner membrane in the absence of its pilotin. EMBO J 2006;25:5241–5249 [CrossRef]
    [Google Scholar]
  75. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011;39:W29–W37 [CrossRef]
    [Google Scholar]
  76. White RC, Gunderson FF, Tyson JY, Richardson KH, Portlock TJ et al. Type II secretion-dependent Aminopeptidase LapA and acyltransferase PlaC Are redundant for nutrient acquisition during Legionella pneumophila intracellular infection of amoebas. MBio 2018;9:e00528-18 [CrossRef]
    [Google Scholar]
  77. Dunstan RA, Heinz E, Wijeyewickrema LC, Pike RN, Purcell AW et al. Assembly of the type II secretion system such as found in Vibrio cholerae depends on the novel Pilotin AspS. PLoS Pathog 2013;9:e1003117 [CrossRef]
    [Google Scholar]
  78. Viarre V, Cascales E, Ball G, Michel GPF, Filloux A et al. HxcQ liposecretin is self-piloted to the outer membrane by its N-terminal lipid anchor. J Biol Chem 2009;284:33815–33823 [CrossRef]
    [Google Scholar]
  79. Madan Babu M, Sankaran K. DOLOP-database of bacterial lipoproteins. Bioinformatics 2002;18:641–643 [CrossRef]
    [Google Scholar]
  80. Carter T, Buensuceso RNC, Tammam S, Lamers RP, Harvey H et al. The type IVA pilus machinery is recruited to sites of future cell division. MBio 2017;8: [CrossRef]
    [Google Scholar]
  81. Yahashiri A, Jorgenson MA, Weiss DS. The SPOR domain, a widely conserved peptidoglycan binding domain that targets proteins to the site of cell division. J Bacteriol 2017;199: [CrossRef]
    [Google Scholar]
  82. Douzi B, Filloux A, Voulhoux R. On the path to uncover the bacterial type II secretion system. Philos Trans R Soc Lond B Biol Sci 2012;367:1059–1072 [CrossRef]
    [Google Scholar]
  83. Possot OM, Vignon G, Bomchil N, Ebel F, Pugsley AP. Multiple interactions between pullulanase secreton components involved in stabilization and cytoplasmic membrane association of PulE. J Bacteriol 2000;182:2142–2152 [CrossRef]
    [Google Scholar]
  84. Schoenhofen IC, Stratilo C, Howard SP. An ExeAB complex in the type II secretion pathway of Aeromonas hydrophila: effect of ATP-binding cassette mutations on complex formation and function. Mol Microbiol 1998;29:1237–1247 [CrossRef]
    [Google Scholar]
  85. Ayers M, Howell PL, Burrows LL. Architecture of the type II secretion and type IV pilus machineries. Future Microbiol 2010;5:1203–1218 [CrossRef]
    [Google Scholar]
  86. Cazalet C, Rusniok C, Brüggemann H, Zidane N, Magnier A et al. Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 2004;36:1165–1173 [CrossRef]
    [Google Scholar]
  87. Chien M, Morozova I, Shi S, Sheng H, Chen J et al. The genomic sequence of the accidental pathogen Legionella pneumophila. Science 2004;305:1966–1968 [CrossRef]
    [Google Scholar]
  88. Glöckner G, Albert-Weissenberger C, Weinmann E, Jacobi S, Schunder E et al. Identification and characterization of a new conjugation/type IVA secretion system (trb/tra) of Legionella pneumophila Corby localized on two mobile genomic islands. Int J Med Microbiol 2008;298:411–428 [CrossRef]
    [Google Scholar]
  89. Schroeder GN, Petty NK, Mousnier A, Harding CR, Vogrin AJ et al. Legionella pneumophila strain 130b possesses a unique combination of type IV secretion systems and novel Dot/Icm secretion system effector proteins. J Bacteriol 2010;192:6001–6016 [CrossRef]
    [Google Scholar]
  90. D'Auria G, Jiménez-Hernández N, Peris-Bondia F, Moya A, Latorre A. Legionella pneumophila pangenome reveals strain-specific virulence factors. BMC Genomics 2010;11:181 [CrossRef]
    [Google Scholar]
  91. Sandkvist M. Type II secretion and pathogenesis. Infect Immun 2001;69:3523–3535 [CrossRef]
    [Google Scholar]
  92. Karlyshev AV, MacIntyre S. Cloning and study of the genetic organization of the exe gene cluster of Aeromonas salmonicida. Gene 1995;158:77–82 [CrossRef]
    [Google Scholar]
  93. Pugsley AP. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 1993;57:50–108
    [Google Scholar]
  94. Francetic O, Pugsley AP. The cryptic general secretory pathway (gsp) operon of Escherichia coli K-12 encodes functional proteins. J Bacteriol 1996;178:3544–3549 [CrossRef]
    [Google Scholar]
  95. Abby SS, Cury J, Guglielmini J, Néron B, Touchon M et al. Identification of protein secretion systems in bacterial genomes. Sci Rep 2016;6:23080 [CrossRef]
    [Google Scholar]
  96. Nivaskumar M, Francetic O. Type II secretion system: a magic beanstalk or a protein escalator. Biochimica et biophysica acta 1843;2014:1568–1577
    [Google Scholar]
  97. Snavely EA, Kokes M, Dunn JD, Saka HA, Nguyen BD et al. Reassessing the role of the secreted protease CPAF in Chlamydia trachomatis infection through genetic approaches. Pathog Dis 2014;71:336–351 [CrossRef]
    [Google Scholar]
  98. Wang X, Han Q, Chen G, Zhang W, Liu W. A putative Type II secretion system is involved in cellulose utilization in Cytophaga hutchisonii. Front Microbiol 2017;8:1482 [CrossRef]
    [Google Scholar]
  99. Karaba SM, White RC, Cianciotto NP. Stenotrophomonas maltophilia encodes a type II protein secretion system that promotes detrimental effects on lung epithelial cells. Infect Immun 2013;81:3210–3219 [CrossRef]
    [Google Scholar]
  100. Corbett M, Virtue S, Bell K, Birch P, Burr T et al. Identification of a new quorum-sensing-controlled virulence factor in Erwinia carotovora subsp. atroseptica secreted via the type II targeting pathway. Mol Plant Microbe Interact 2005;18:334–342 [CrossRef]
    [Google Scholar]
  101. DeShazer D, Brett PJ, Burtnick MN, Woods DE. Molecular characterization of genetic loci required for secretion of exoproducts in Burkholderia pseudomallei. J Bacteriol 1999;181:4661–4664
    [Google Scholar]
  102. Iwobi A, Heesemann J, Garcia E, Igwe E, Noelting C et al. Novel virulence-associated type II secretion system unique to high-pathogenicity Yersinia enterocolitica. Infect Immun 2003;71:1872–1879 [CrossRef]
    [Google Scholar]
  103. Lee HM, Chen JR, Lee HL, Leu WM, Chen LY et al. Functional dissection of the XpsN (GspC) protein of the Xanthomonas campestris pv. campestris type II secretion machinery. J Bacteriol 2004;186:2946–2955 [CrossRef]
    [Google Scholar]
  104. do Vale A, Pereira C, Osorio RC, dos Santos NMS. The Apoptogenic Toxin AIP56 Is Secreted by the Type II Secretion System of Photobacterium damselae subsp. piscicida. Toxins 2017;9:368 [CrossRef]
    [Google Scholar]
  105. Waack U, Warnock M, Yee A, Huttinger Z, Smith S et al. CpaA Is a Glycan-Specific Adamalysin-like Protease Secreted by Acinetobacter baumannii That Inactivates Coagulation Factor XII. MBio 2018;9:e01606-18 [CrossRef]
    [Google Scholar]
  106. Carda-Diéguez M, Silva-Hernández FX, Hubbard TP, Chao MC, Waldor MK et al. Comprehensive identification of Vibrio vulnificus genes required for growth in human serum. Virulence 2018;9:981–993 [CrossRef]
    [Google Scholar]
  107. Elhosseiny NM, Elhezawy NB, Attia AS. Comparative proteomics analyses of Acinetobacter baumannii strains ATCC 17978 and AB5075 reveal the differential role of type II secretion system secretomes in lung colonization and ciprofloxacin resistance. Microb Pathog 2019;128:20–27 [CrossRef]
    [Google Scholar]
  108. Saint-Criq V, Villeret B, Bastaert F, Kheir S, Hatton A et al. Pseudomonas aeruginosa LasB protease impairs innate immunity in mice and humans by targeting a lung epithelial cystic fibrosis transmembrane regulator-IL-6-antimicrobial-repair pathway. Thorax 2018;73:49–61 [CrossRef]
    [Google Scholar]
  109. Jang KK, Lee ZW, Kim B, Jung YH, Han HJ et al. Identification and characterization of Vibrio vulnificus plpA encoding a phospholipase A2 essential for pathogenesis. J Biol Chem 2017;292:17129–17143 [CrossRef]
    [Google Scholar]
  110. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014;42:D633–D642 [CrossRef]
    [Google Scholar]
  111. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef]
    [Google Scholar]
  112. Polesky AH, Ross JT, Falkow S, Tompkins LS. Identification of Legionella pneumophila genes important for infection of amoebas by signature-tagged mutagenesis. Infect Immun 2001;69:977–987 [CrossRef]
    [Google Scholar]
  113. Tyson JY, Vargas P, Cianciotto NP. The novel Legionella pneumophila type II secretion substrate NttC contributes to infection of amoebae Hartmannella vermiformis and Willaertia magna. Microbiology 2014;160:2732–2744 [CrossRef]
    [Google Scholar]
  114. Söderberg MA, Dao J, Starkenburg SR, Cianciotto NP. Importance of type II secretion for survival of Legionella pneumophila in tap water and in amoebae at low temperatures. Appl Environ Microbiol 2008;74:5583–5588 [CrossRef]
    [Google Scholar]
  115. Söderberg MA, Rossier O, Cianciotto NP. The type II protein secretion system of Legionella pneumophila promotes growth at low temperatures. J Bacteriol 2004;186:3712–3720 [CrossRef]
    [Google Scholar]
  116. Duncan C, Prashar A, So J, Tang P, Low DE et al. Lcl of Legionella pneumophila is an immunogenic GAG binding adhesin that promotes interactions with lung epithelial cells and plays a crucial role in biofilm formation. Infect Immun 2011;79:2168–2181 [CrossRef]
    [Google Scholar]
  117. Mallegol J, Duncan C, Prashar A, So J, Low DE et al. Essential roles and regulation of the Legionella pneumophila collagen-like adhesin during biofilm formation. PLoS One 2012;7:e46462 [CrossRef]
    [Google Scholar]
  118. Lucas CE, Brown E, Fields BS. Type IV pili and type II secretion play a limited role in Legionella pneumophila biofilm colonization and retention. Microbiology 2006;152:3569–3573 [CrossRef]
    [Google Scholar]
  119. Stewart CR, Rossier O, Cianciotto NP. Surface translocation by Legionella pneumophila: a form of sliding motility that is dependent upon type II protein secretion. J Bacteriol 2009;191:1537–1546 [CrossRef]
    [Google Scholar]
  120. Stewart CR, Burnside DM, Cianciotto NP. The surfactant of Legionella pneumophila is secreted in a TolC-dependent manner and is antagonistic toward other Legionella species. J Bacteriol 2011;193:5971–5984 [CrossRef]
    [Google Scholar]
  121. Johnston CW, Plumb J, Li X, Grinstein S, Magarvey NA. Informatic analysis reveals Legionella as a source of novel natural products. Synth Syst Biotechnol 2016;1:130–136 [CrossRef]
    [Google Scholar]
  122. Cianciotto NP. Type II secretion and Legionella virulence. Curr Top Microbiol Immunol 2013;376:81–102 [CrossRef]
    [Google Scholar]
  123. Mallama CA, McCoy-Simandle K, Cianciotto NP. The Type II Secretion System of Legionella pneumophila Dampens the MyD88 and Toll-Like Receptor 2 Signaling Pathway in Infected Human Macrophages. Infect Immun 2017;85: [CrossRef]
    [Google Scholar]
  124. McCoy-Simandle K, Stewart CR, Dao J, DebRoy S, Rossier O et al. Legionella pneumophila type II secretion dampens the cytokine response of infected macrophages and epithelia. Infect Immun 2011;79:1984–1997 [CrossRef]
    [Google Scholar]
  125. White RC, Cianciotto NP. Type II secretion is necessary for optimal association of the Legionella-containing vacuole with macrophage Rab1B but enhances intracellular replication mainly by Rab1B-Independent mechanisms. Infect Immun 2016;84:3313–3327 [CrossRef]
    [Google Scholar]
  126. Truchan HK, Christman HD, White RC, Rutledge NS, Cianciotto NP. Type II Secretion Substrates of Legionella pneumophila Translocate Out of the Pathogen-Occupied Vacuole via a Semipermeable Membrane. MBio 2017;8:e00870-17 [CrossRef]
    [Google Scholar]
  127. Faucher SP, Mueller CA, Shuman HA. Legionella pneumophila transcriptome during intracellular multiplication in human macrophages. Front Microbiol 2011;2:60 [CrossRef]
    [Google Scholar]
  128. Brüggemann H, Hagman A, Jules M, Sismeiro O, Dillies M-A et al. Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Cell Microbiol 2006;8:1228–1240 [CrossRef]
    [Google Scholar]
  129. Broich M, Rydzewski K, McNealy TL, Marre R, Flieger A. The global regulatory proteins LetA and RpoS control phospholipase A, lysophospholipase A, acyltransferase, and other hydrolytic activities of Legionella pneumophila JR32. J Bacteriol 2006;188:1218–1226 [CrossRef]
    [Google Scholar]
  130. Jules M, Buchrieser C. Legionella pneumophila adaptation to intracellular life and the host response: clues from genomics and transcriptomics. FEBS Lett 2007;581:2829–2838 [CrossRef]
    [Google Scholar]
  131. DebRoy S, Dao J, Söderberg M, Rossier O, Cianciotto NP. Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc Natl Acad Sci U S A 2006;103:19146–19151 [CrossRef]
    [Google Scholar]
  132. Galka F, Wai SN, Kusch H, Engelmann S, Hecker M et al. Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles. Infect Immun 2008;76:1825–1836 [CrossRef]
    [Google Scholar]
  133. Aurass P, Gerlach T, Becher D, Voigt B, Karste S et al. Life stage-specific proteomes of Legionella pneumophila reveal a highly differential abundance of virulence-associated Dot/Icm effectors. Mol Cell Proteomics 2016;15:177–200 [CrossRef]
    [Google Scholar]
  134. De Buck E, Höper D, Lammertyn E, Hecker M, Anné J. Differential 2-D protein gel electrophoresis analysis of Legionella pneumophila wild type and Tat secretion mutants. Int J Med Microbiol 2008;298:449–461 [CrossRef]
    [Google Scholar]
  135. Rossier O, Cianciotto NP. The Legionella pneumophila tatB gene facilitates secretion of phospholipase C, growth under iron-limiting conditions, and intracellular infection. Infect Immun 2005;73:2020–2032 [CrossRef]
    [Google Scholar]
  136. Debroy S, Aragon V, Kurtz S, Cianciotto NP. Legionella pneumophila MIP, a surface-exposed peptidylproline cis-trans-isomerase, promotes the presence of phospholipase C-like activity in culture supernatants. Infect Immun 2006;74:5152–5160 [CrossRef]
    [Google Scholar]
  137. Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 2010;64:163–184 [CrossRef]
    [Google Scholar]
  138. Jan AT. Outer membrane vesicles (OMVs) of gram-negative bacteria: a perspective update. Front Microbiol 2017;8:1053 [CrossRef]
    [Google Scholar]
  139. Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 2015;13:605–619 [CrossRef]
    [Google Scholar]
  140. Pearce MM. The Identification and Characterization of a Novel Clinically Relevent Legionella Species, Legionella Cardiaca, and the Role of Three Type Ii Secreted Effectors in Legionella Pneumophila Metabolism, Physiology and Pathogenesis Evanston, IL.: Northwestern; 2011
    [Google Scholar]
  141. Pearce MM, Cianciotto NP. Legionella pneumophila secretes an endoglucanase that belongs to the family-5 of glycosyl hydrolases and is dependent upon type II secretion. FEMS Microbiol Lett 2009;300:256–264 [CrossRef]
    [Google Scholar]
  142. Herrmann V, Eidner A, Rydzewski K, Blädel I, Jules M et al. GamA is a eukaryotic-like glucoamylase responsible for glycogen- and starch-degrading activity of Legionella pneumophila. Int J Med Microbiol 2011;301:133–139 [CrossRef]
    [Google Scholar]
  143. Rossier O, Dao J, Cianciotto NP. The type II secretion system of Legionella pneumophila elaborates two aminopeptidases, as well as a metalloprotease that contributes to differential infection among protozoan hosts. Appl Environ Microbiol 2008;74:753–761 [CrossRef]
    [Google Scholar]
  144. Zhang N, Yin S, Zhang W, Gong X, Zhang N et al. Crystal structure and biochemical characterization of an aminopeptidase LapB from Legionella pneumophila. J Agric Food Chem 2017;65:7569–7578 [CrossRef]
    [Google Scholar]
  145. Vandersmissen L, De Buck E, Saels V, Coil DA, Anné J. A Legionella pneumophila collagen-like protein encoded by a gene with a variable number of tandem repeats is involved in the adherence and invasion of host cells. FEMS Microbiol Lett 2010;306:168–176 [CrossRef]
    [Google Scholar]
  146. Abdel-Nour M, Duncan C, Prashar A, Rao C, Ginevra C et al. The Legionella pneumophila collagen-like protein mediates sedimentation, autoaggregation, and pathogen-phagocyte interactions. Appl Environ Microbiol 2014;80:1441–1454 [CrossRef]
    [Google Scholar]
  147. Aragon V, Rossier O, Cianciotto NP. Legionella pneumophila genes that encode lipase and phospholipase C activities. Microbiology 2002;148:2223–2231 [CrossRef]
    [Google Scholar]
  148. Zusman T, Degtyar E, Segal G. Identification of a hypervariable region containing new Legionella pneumophila Icm/Dot translocated substrates by using the conserved icmQ regulatory signature. Infect Immun 2008;76:4581–4591 [CrossRef]
    [Google Scholar]
  149. Söderberg MA, Cianciotto NP. A Legionella pneumophila peptidyl-prolyl cis-trans isomerase present in culture supernatants is necessary for optimal growth at low temperatures. Appl Environ Microbiol 2008;74:1634–1638 [CrossRef]
    [Google Scholar]
  150. Aragon V, Kurtz S, Cianciotto NP. Legionella pneumophila major acid phosphatase and its role in intracellular infection. Infect Immun 2001;69:177–185 [CrossRef]
    [Google Scholar]
  151. Dhatwalia R, Singh H, Reilly TJ, Tanner JJ. Crystal structure and tartrate inhibition of Legionella pneumophila histidine acid phosphatase. Arch Biochem Biophys 2015;585:32–38 [CrossRef]
    [Google Scholar]
  152. Gong X, Zhao X, Zhang W, Wang J, Chen X et al. Structural characterization of the hypothetical protein Lpg2622, a new member of the C1 family peptidases from Legionella pneumophila. FEBS Lett 2018;592:2798–2810 [CrossRef]
    [Google Scholar]
  153. Tyson JY. Novel Type II Secretion Substrates of Legionella pneumophila Contribute to Infection of Multiple Amoebal Hosts Evanston, IL: Northwestern; 2014
    [Google Scholar]
  154. Zhang N, Yin S, Liu S, Sun A, Zhou M et al. Crystal structure of lpg1832, a VirK family protein from Legionella pneumophila, reveals a novel fold for bacterial VirK proteins. FEBS Lett 2017;591:2929–2935 [CrossRef]
    [Google Scholar]
  155. Flieger A, Neumeister B, Cianciotto NP. Characterization of the gene encoding the major secreted lysophospholipase A of Legionella pneumophila and its role in detoxification of lysophosphatidylcholine. Infect Immun 2002;70:6094–6106 [CrossRef]
    [Google Scholar]
  156. Creasey EA, Isberg RR. The protein SdhA maintains the integrity of the Legionella-containing vacuole. Proc Natl Acad Sci U S A 2012;109:3481–3486 [CrossRef]
    [Google Scholar]
  157. Banerji S, Bewersdorff M, Hermes B, Cianciotto NP, Flieger A. Characterization of the major secreted zinc metalloprotease- dependent glycerophospholipid:cholesterol acyltransferase, PlaC, of Legionella pneumophila. Infect Immun 2005;73:2899–2909 [CrossRef]
    [Google Scholar]
  158. Rossier O, Dao J, Cianciotto NP. A type II secreted RNase of Legionella pneumophila facilitates optimal intracellular infection of hartmannella vermiformis. Microbiology 2009;155:882–890 [CrossRef]
    [Google Scholar]
  159. Moffat JF, Edelstein PH, Regula DP, Cirillo JD, Tompkins LS. Effects of an isogenic Zn-metalloprotease-deficient mutant of Legionella pneumophila in a guinea-pig pneumonia model. Mol Microbiol 1994;12:693–705 [CrossRef]
    [Google Scholar]
  160. Szeto L, Shuman HA. The Legionella pneumophila major secretory protein, a protease, is not required for intracellular growth or cell killing. Infect Immun 1990;58:2585–2592
    [Google Scholar]
  161. Conlan JW, Williams A, Ashworth LAE. In vivo production of a tissue-destructive protease by Legionella pneumophila in the lungs of experimentally infected guinea-pigs. Microbiology 1988;134:143–149 [CrossRef]
    [Google Scholar]
  162. Williams A, Baskerville A, Dowsett AB, Conlan JW. Immunocytochemical demonstration of the association between Legionella pneumophila, its tissue-destructive protease, and pulmonary lesions in experimental Legionnaires' disease. J Pathol 1987;153:257–264 [CrossRef]
    [Google Scholar]
  163. Baskerville A, Conlan JW, Ashworth LA, Dowsett AB. Pulmonary damage caused by a protease from Legionella pneumophila. Br J Exp Pathol 1986;67:527–536
    [Google Scholar]
  164. Conlan JW, Baskerville A, Ashworth LAE. Separation of Legionella pneumophila proteases and purification of a protease which produces lesions like those of legionnaires" disease in guinea pig lung. Microbiology 1986;132:1565–1574 [CrossRef]
    [Google Scholar]
  165. Berdal BP, Olsvik O, Myhre S, Omland T. Demonstration of extracellular chymotrypsin-like activity from various Legionella species. J Clin Microbiol 1982;16:452–457
    [Google Scholar]
  166. Thompson MR, Miller RD, Iglewski BH. In vitro production of an extracellular protease by Legionella pneumophila. Infect Immun 1981;34:299–302
    [Google Scholar]
  167. Berdal BP, Fossum K. Occurrence and immunogenicity of proteinases from Legionella species. Eur J Clin Microbiol 1982;1:7–11 [CrossRef]
    [Google Scholar]
  168. Muller HE. Proteolytic action of Legionella pneumophila on human serum proteins. Infect Immun 1980;27:51–53
    [Google Scholar]
  169. Müller HE. Enzymatic profile of Legionella pneumophilia. J Clin Microbiol 1981;13:423–426
    [Google Scholar]
  170. Thorpe TC, Miller RD. Extracellular enzymes of Legionella pneumophila. Infect Immun 1981;33:632–635
    [Google Scholar]
  171. Aragon V, Kurtz S, Flieger A, Neumeister B, Cianciotto NP. Secreted enzymatic activities of wild-type and pilD-deficient Legionella pneumophila. Infect Immun 2000;68:1855–1863 [CrossRef]
    [Google Scholar]
  172. Flieger A, Gong S, Faigle M, Stevanovic S, Cianciotto NP et al. Novel lysophospholipase A secreted by Legionella pneumophila. Journal of Bacteriology 2001;183:2121–2124 [CrossRef]
    [Google Scholar]
  173. Aurass P, Schlegel M, Metwally O, Harding CR, Schroeder GN et al. The Legionella pneumophila Dot/Icm-secreted effector PlcC/CegC1 together with PlcA and PlcB promotes virulence and belongs to a novel zinc metallophospholipase C family present in bacteria and fungi. J Biol Chem 2013;288:11080–11092 [CrossRef]
    [Google Scholar]
  174. Lang C, Hiller M, Flieger A. Disulfide loop cleavage of Legionella pneumophila PlaA boosts lysophospholipase A activity. Sci Rep 2017;7:16313 [CrossRef]
    [Google Scholar]
  175. Lang C, Rastew E, Hermes B, Siegbrecht E, Ahrends R et al. Zinc metalloproteinase ProA directly activates Legionella pneumophila PlaC glycerophospholipid:cholesterol acyltransferase. J Biol Chem 2012;287:23464–23478 [CrossRef]
    [Google Scholar]
  176. O'Connor TJ, Boyd D, Dorer MS, Isberg RR. Aggravating genetic interactions allow a solution to redundancy in a bacterial pathogen. Science 2012;338:1440–1444 [CrossRef]
    [Google Scholar]
  177. Ghosh S, O'Connor TJ. Beyond paralogs: the multiple layers of redundancy in bacterial pathogenesis. Front Cell Infect Microbiol 2017;7:467 [CrossRef]
    [Google Scholar]
  178. Schroeder GN. The toolbox for uncovering the functions of Legionella Dot/Icm Type IVb secretion system effectors: current state and future directions. Front Cell Infect Microbiol 2017;7:528 [CrossRef]
    [Google Scholar]
  179. Blander SJ, Szeto L, Shuman HA, Horwitz MA. An immunoprotective molecule, the major secretory protein of Legionella pneumophila, is not a virulence factor in a guinea pig model of Legionnaires' disease. J Clin Invest 1990;86:817–824 [CrossRef]
    [Google Scholar]
  180. James BW, Mauchline WS, Dennis PJ, Keevil CW. A study of iron acquisition mechanisms of Legionella pneumophila grown in chemostat culture. Curr Microbiol 1997;34:238–243 [CrossRef]
    [Google Scholar]
  181. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015;10:845–858 [CrossRef]
    [Google Scholar]
  182. Liepinsh E, Généreux C, Dehareng D, Joris B, Otting G. NMR structure of Citrobacter freundii AMPD, comparison with bacteriophage T7 lysozyme and homology with PGRP domains. J Mol Biol 2003;327:833–842 [CrossRef]
    [Google Scholar]
  183. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005;21:3674–3676 [CrossRef]
    [Google Scholar]
  184. Tesh MJ, Morse SA, Miller RD. Intermediary metabolism in Legionella pneumophila: utilization of amino acids and other compounds as energy sources. J Bacteriol 1983;154:1104–1109
    [Google Scholar]
  185. Schunder E, Gillmaier N, Kutzner E, Eisenreich W, Herrmann V et al. Amino acid uptake and metabolism of Legionella pneumophila hosted by Acanthamoeba castellanii. J Biol Chem 2014;289:21040–21054 [CrossRef]
    [Google Scholar]
  186. Manske C, Hilbi H. Metabolism of the vacuolar pathogen Legionella and implications for virulence. Front Cell Infect Microbiol 2014;4:125 [CrossRef]
    [Google Scholar]
  187. de Felipe KS, Pampou S, Jovanovic OS, Pericone CD, Ye SF et al. Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J Bacteriol 2005;187:7716–7726 [CrossRef]
    [Google Scholar]
  188. Nora T, Lomma M, Gomez-Valero L, Buchrieser C. Molecular mimicry: an important virulence strategy employed by Legionella pneumophila to subvert host functions. Future Microbiol 2009;4:691–701 [CrossRef]
    [Google Scholar]
  189. Lurie-Weinberger MN, Gomez-Valero L, Merault N, Glöckner G, Buchrieser C et al. The origins of eukaryotic-like proteins in Legionella pneumophila. Int J Med Microbiol 2010;300:470–481 [CrossRef]
    [Google Scholar]
  190. Gomez-Valero L, Rusniok C, Cazalet C, Buchrieser C. Comparative and functional genomics of Legionella identified eukaryotic like proteins as key players in host?pathogen interactions. Front Microbiol 2011;2:Artn 208 [CrossRef]
    [Google Scholar]
  191. Horwitz MA. Phagocytosis of the Legionnaires' disease bacterium (Legionella pneumophila) occurs by a novel mechanism: engulfment within a pseudopod coil. Cell 1984;36:27–33 [CrossRef]
    [Google Scholar]
  192. Clemens DL, Lee BY, Horwitz MA. Francisella tularensis enters macrophages via a novel process involving pseudopod loops. Infect Immun 2005;73:5892–5902 [CrossRef]
    [Google Scholar]
  193. Celli J, Zahrt TC. Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb Perspect Med 2013;3:a010314 [CrossRef]
    [Google Scholar]
  194. Abd H, Johansson T, Golovliov I, Sandström G, Forsman M. Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl Environ Microbiol 2003;69:600–606 [CrossRef]
    [Google Scholar]
  195. Schrallhammer M, Castelli M, Petroni G. Phylogenetic relationships among endosymbiotic R-body producer: bacteria providing their host the killer trait. Syst Appl Microbiol 2018;41:213–220 [CrossRef]
    [Google Scholar]
  196. Santos P, Pinhal I, Rainey FA, Empadinhas N, Costa J et al. Gamma-Proteobacteria Aquicella lusitana gen. nov., sp. nov., and Aquicella siphonis sp. nov. infect protozoa and require activated charcoal for growth in laboratory media. Appl Environ Microbiol 2003;69:6533–6540 [CrossRef]
    [Google Scholar]
  197. Gomez-Valero L, Rusniok C, Carson D, Mondino S, Pérez-Cobas AE et al. More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells. Proc Natl Acad Sci U S A 2019;116:2265–2273 [CrossRef]
    [Google Scholar]
  198. de Felipe KS, Glover RT, Charpentier X, Anderson OR, Reyes M et al. Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog 2008;4:e1000117 [CrossRef]
    [Google Scholar]
  199. Matsuda S, Okada R, Tandhavanant S, Hiyoshi H, Gotoh K et al. Export of a Vibrio parahaemolyticus toxin by the Sec and type III secretion machineries in tandem. Nat Microbiol 2019;4:781–788 [CrossRef]
    [Google Scholar]
  200. Degtyar E, Zusman T, Ehrlich M, Segal G. A Legionella effector acquired from protozoa is involved in sphingolipids metabolism and is targeted to the host cell mitochondria. Cell Microbiol 2009;11:1219–1235 [CrossRef]
    [Google Scholar]
  201. Kubiak X, Dervins-Ravault D, Pluvinage B, Chaffotte AF, Gomez-Valero L et al. Characterization of an acetyltransferase that detoxifies aromatic chemicals in Legionella pneumophila. Biochem J 2012;445:219–228 [CrossRef]
    [Google Scholar]
  202. Abrahão J, Silva L, Silva LS, Khalil JYB, Rodrigues R et al. Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat Commun 2018;9:749 [CrossRef]
    [Google Scholar]
  203. Gomez-Valero L, Buchrieser C. Genome dynamics in Legionella: the basis of versatility and adaptation to intracellular replication. Cold Spring Harb Perspect Med 2013;3:a009993 [CrossRef]
    [Google Scholar]
  204. Moliner C, Raoult D, Fournier PE. Evidence that the intra-amoebal Legionella drancourtii acquired a sterol reductase gene from eukaryotes. BMC Res Notes 2009;2:51 [CrossRef]
    [Google Scholar]
  205. Hingamp P, Grimsley N, Acinas SG, Clerissi C, Subirana L et al. Exploring nucleo-cytoplasmic large DNA viruses in tara Oceans microbial metagenomes. Isme J 2013;7:1678–1695 [CrossRef]
    [Google Scholar]
  206. Yu Z, An B, Ramshaw JAM, Brodsky B. Bacterial collagen-like proteins that form triple-helical structures. J Struct Biol 2014;186:451–461 [CrossRef]
    [Google Scholar]
  207. Stebbins CE, Galán JE. Structural mimicry in bacterial virulence. Nature 2001;412:701–705 [CrossRef]
    [Google Scholar]
  208. Ozanic M, Gobin I, Brezovec M, Marecic V, Trobonjaca Z et al. F. novicida-Infected A. castellanii Does Not Enhance Bacterial Virulence in Mice. Front Cell Infect Microbiol 2016;6:56 [CrossRef]
    [Google Scholar]
  209. Ozanic M, Marecic V, Abu Kwaik Y, Santic M. The divergent intracellular lifestyle of Francisella tularensis in evolutionarily distinct host cells. PLoS Pathog 2015;11:e1005208 [CrossRef]
    [Google Scholar]
  210. Al-Khodor S, Kalachikov S, Morozova I, Price CT, Abu Kwaik Y. The PmrA/PmrB two-component system of Legionella pneumophila is a global regulator required for intracellular replication within macrophages and protozoa. Infect Immun 2009;77:374–386 [CrossRef]
    [Google Scholar]
  211. Sahr T, Rusniok C, Impens F, Oliva G, Sismeiro O et al. The Legionella pneumophila genome evolved to accommodate multiple regulatory mechanisms controlled by the CsrA-system. PLoS Genet 2017;13:e1006629 [CrossRef]
    [Google Scholar]
  212. Tanner JR, Li L, Faucher SP, Brassinga AKC. The CpxRA two-component system contributes to Legionella pneumophila virulence. Mol Microbiol 2016;100:1017–1038 [CrossRef]
    [Google Scholar]
  213. Costa J, d'Avó AF, da Costa MS, Veríssimo A. Molecular evolution of key genes for type II secretion in Legionella pneumophila. Environ Microbiol 2012;14:2017–2033 [CrossRef]
    [Google Scholar]
  214. Qin T, Zhou H, Ren H, Liu W. Distribution of secretion systems in the genus Legionella and Its correlation with pathogenicity. Front Microbiol 2017;8:388 [CrossRef]
    [Google Scholar]
  215. Gomez-Valero L, Rusniok C, Rolando M, Neou M, Dervins-Ravault D et al. Comparative analyses of Legionella species identifies genetic features of strains causing Legionnaires' disease. Genome Biol 2014;15:505 [CrossRef]
    [Google Scholar]
  216. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018;46:D851–D860 [CrossRef]
    [Google Scholar]
  217. Joseph SJ, Cox D, Wolff B, Morrison SS, Kozak-Muiznieks NA et al. Dynamics of genome change among Legionella species. Sci Rep 2016;6:33442 [CrossRef]
    [Google Scholar]
  218. Arslan-Aydoğdu EO, Kimiran A. An investigation of virulence factors of Legionella pneumophila environmental isolates. Braz J Microbiol 2018;49:189–199 [CrossRef]
    [Google Scholar]
  219. Fields BS, Barbaree JM, Sanden GN, Morrill WE. Virulence of a Legionella anisa strain associated with Pontiac fever: an evaluation using protozoan, cell culture, and guinea pig models. Infect Immun 1990;58:3139–3142
    [Google Scholar]
  220. Wadowsky RM, Wilson TM, Kapp NJ, West AJ, Kuchta JM et al. Multiplication of Legionella spp. in tap water containing Hartmannella vermiformis. Appl Environ Microbiol 1991;57:1950–1955
    [Google Scholar]
  221. Neumeister B, Schöniger S, Faigle M, Eichner M, Dietz K. Multiplication of different Legionella species in Mono Mac 6 cells and in Acanthamoeba castellanii. Appl Environ Microbiol 1997;63:1219–1224
    [Google Scholar]
  222. Edelstein PH, Edelstein MA, Shephard LJ, Ward KW, Ratcliff RM. Legionella steelei sp. nov., isolated from human respiratory specimens in California, USA, and South Australia. Int J Syst Evol Microbiol 2012;62:1766–1771 [CrossRef]
    [Google Scholar]
  223. Adeleke AA, Fields BS, Benson RF, Daneshvar MI, Pruckler JM et al. Legionella drozanskii sp. nov., Legionella rowbothamii sp. nov. and Legionella fallonii sp. nov.: three unusual new Legionella species. Int J Syst Evol Microbiol 2001;51:1151–1160 [CrossRef]
    [Google Scholar]
  224. Cazalet C, Gomez-Valero L, Rusniok C, Lomma M, Dervins-Ravault D et al. Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires' disease. PLoS Genet 2010;6:e1000851 [CrossRef]
    [Google Scholar]
  225. Bacigalupe R, Lindsay D, Edwards G, Fitzgerald JR. Population genomics of Legionella longbeachae and hidden complexities of infection source attribution. Emerg Infect Dis 2017;23:750–757 [CrossRef]
    [Google Scholar]
  226. Kozak NA, Buss M, Lucas CE, Frace M, Govil D et al. Virulence factors encoded by Legionella longbeachae identified on the basis of the genome sequence analysis of clinical isolate D-4968. J Bacteriol 2010;192:1030–1044 [CrossRef]
    [Google Scholar]
  227. Cho H, Cronan JE. Escherichia coli thioesterase I, molecular cloning and sequencing of the structural gene and identification as a periplasmic enzyme. J Biol Chem 1993;268:9238–9245
    [Google Scholar]
  228. Burstein D, Amaro F, Zusman T, Lifshitz Z, Cohen O et al. Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires. Nat Genet 2016;48:167–175 [CrossRef]
    [Google Scholar]
  229. Williams KP. Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res 2002;30:866–875 [CrossRef]
    [Google Scholar]
  230. Veltri D, Wight MM, Crouch JA. SimpleSynteny: a web-based tool for visualization of microsynteny across multiple species. Nucleic Acids Res 2016;44:W41–W45 [CrossRef]
    [Google Scholar]
  231. Tan Y, Luo Z-Q. Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature 2011;475:506–509 [CrossRef]
    [Google Scholar]
  232. Tan Y, Arnold RJ, Luo ZQ. Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci U S A 2011;108:21212–21217 [CrossRef]
    [Google Scholar]
  233. Flieger A, Gong S, Faigle M, Northoff H, Neumeister B. In vitro secretion kinetics of proteins from Legionella pneumophila in comparison to proteins from non-pneumophila species. Microbiology 2001;147:3127–3134 [CrossRef]
    [Google Scholar]
  234. McIntyre M, Quinn FD, Fields PI, Berdal BP. Rapid identification of Legionella pneumophila zinc metalloprotease using chromogenic detection. APMIS 1991;99:316–320 [CrossRef]
    [Google Scholar]
  235. Flieger A, Gong S, Faigle M, Deeg M, Bartmann P et al. Novel phospholipase A activity secreted by Legionella species. J Bacteriol 2000;182:1321–1327 [CrossRef]
    [Google Scholar]
  236. Baine WB. Cytolytic and phospholipase C activity in Legionella species. J Gen Microbiol 1985;131:1383–1391 [CrossRef]
    [Google Scholar]
  237. Nagai H, Kubori T. Type IVB secretion systems of Legionella and other gram-negative bacteria. Front Microbiol 2011;2:136 [CrossRef]
    [Google Scholar]
  238. Gong J, Qing Y, Zou S, Fu R, Su L et al. Protist-Bacteria associations: gammaproteobacteria and alphaproteobacteria are prevalent as digestion-resistant bacteria in ciliated protozoa. Front Microbiol 2016;7:498 [CrossRef]
    [Google Scholar]
  239. Cordaux R, Paces-Fessy M, Raimond M, Michel-Salzat A, Zimmer M et al. Molecular characterization and evolution of arthropod-pathogenic Rickettsiella bacteria. Appl Environ Microbiol 2007;73:5045–5047 [CrossRef]
    [Google Scholar]
  240. van Schaik EJ, Chen C, Mertens K, Weber MM, Samuel JE. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nat Rev Microbiol 2013;11:561–573 [CrossRef]
    [Google Scholar]
  241. Mediannikov O, Sekeyová Z, Birg ML, Raoult D. A novel obligate intracellular gamma-proteobacterium associated with ixodid ticks, Diplorickettsia massiliensis, Gen. Nov., Sp. Nov. PLoS One 2010;5:e11478 [CrossRef]
    [Google Scholar]
  242. Fields BS, Benson RF, Besser RE, Legionella BRE. Legionella and Legionnaires' disease: 25 years of investigation. Clin Microbiol Rev 2002;15:506–526 [CrossRef]
    [Google Scholar]
  243. Mehari YT, Jason Hayes B, Redding KS, Mariappan PVG, Gunderson JH et al. Description of 'Candidatus Berkiella aquae' and 'Candidatus Berkiella cookevillensis', two intranuclear bacteria of freshwater amoebae. Int J Syst Evol Microbiol 2016;66:536–541 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000273
Loading
/content/journal/mgen/10.1099/mgen.0.000273
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error