1887

Abstract

is a ubiquitous, diarrhoeagenic pathogen often associated with healthcare-acquired infections that can cause a range of symptoms from mild, self-limiting disease to toxic megacolon and death. Since the early 2000s, a large proportion of cases have been attributed to the ribotype 027 (RT027) lineage, which is associated with sequence type 1 (ST1) in the multilocus sequence typing scheme. The spread of ST1 has been attributed, in part, to resistance to fluoroquinolones used to treat unrelated infections, which creates conditions ideal for colonization and proliferation. In this study, we analysed 27 isolates from a healthcare network in northern Arizona, USA, and 1352 publicly available ST1 genomes to place locally sampled isolates into a global context. Whole genome, single nucleotide polymorphism analysis demonstrated that at least six separate introductions of ST1 were observed in healthcare facilities in northern Arizona over an 18-month sampling period. A reconstruction of transmission networks identified potential nosocomial transmission of isolates, which were only identified via whole genome sequence analysis. Antibiotic resistance heterogeneity was observed among ST1 genomes, including variability in resistance profiles among locally sampled ST1 isolates. To investigate why ST1 genomes are so common globally and in northern Arizona, we compared all high-quality genomes and identified that ST1 genomes have gained and lost a number of genomic regions compared to all other genomes; analyses of other toxigenic sequence types demonstrate that this loss may be anomalous and could be related to niche specialization. These results suggest that a combination of antimicrobial resistance and gain and loss of specific genes may explain the prominent association of this sequence type with infection cases worldwide. The degree of genetic variability in ST1 suggests that classifying all ST1 genomes into a quinolone-resistant hypervirulent clone category may not be appropriate. Whole genome sequencing of clinical isolates provides a high-resolution surveillance strategy for monitoring persistence and transmission of and for assessing the performance of infection prevention and control strategies.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000271
2019-07-01
2019-08-18
Loading full text...

Full text loading...

/deliver/fulltext/mgen/5/7/mgen000271.html?itemId=/content/journal/mgen/10.1099/mgen.0.000271&mimeType=html&fmt=ahah

References

  1. Lawson PA, Citron DM, Tyrrell KL, Finegold SM. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O'Toole 1935) Prévot 1938. Anaerobe 2016;40:95–99 [CrossRef]
    [Google Scholar]
  2. Stabler RA, He M, Dawson L, Martin M, Valiente E et al. Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol 2009;10:R102 [CrossRef]
    [Google Scholar]
  3. Popoff MR, Rubin EJ, Gill DM, Boquet P. Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect Immun 1988;56:2299–2306
    [Google Scholar]
  4. McDonald LC, Killgore GE, Thompson A, Owens RC, Kazakova SV et al. An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 2005;353:2433–2441 [CrossRef]
    [Google Scholar]
  5. Loo VG, Poirier L, Miller MA, Oughton M, Libman MD et al. A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med 2005;353:2442–2449 [CrossRef]
    [Google Scholar]
  6. Warny M, Pepin J, Fang A, Killgore G, Thompson A et al. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. The Lancet 2005;366:1079–1084 [CrossRef]
    [Google Scholar]
  7. Barbut F, Mastrantonio P, Delmée M, Brazier J, Kuijper E et al. Prospective study of Clostridium difficile infections in Europe with phenotypic and genotypic characterisation of the isolates. Clin Microbiol Infect 2007;13:1048–1057 [CrossRef]
    [Google Scholar]
  8. Kuijper EJ et al. Update of Clostridium difficile infection due to PCR ribotype 027 in Europe, 2008. Euro Surveill 2008;13:
    [Google Scholar]
  9. He M, Miyajima F, Roberts P, Ellison L, Pickard DJ et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet 2013;45:109–113 [CrossRef]
    [Google Scholar]
  10. Wilcox MH, Shetty N, Fawley WN, Shemko M, Coen P et al. Changing epidemiology of Clostridium difficile infection following the introduction of a national ribotyping-based surveillance scheme in England. Clin Infect Dis 2012;55:1056–1063 [CrossRef]
    [Google Scholar]
  11. Tickler IA, Goering RV, Whitmore JD, Lynn ANW, Persing DH et al. Strain types and antimicrobial resistance patterns of Clostridium difficile isolates from the United States, 2011 to 2013. Antimicrob Agents Chemother 2014;58:4214–4218 [CrossRef]
    [Google Scholar]
  12. Davies KA, Ashwin H, Longshaw CM, Burns DA, Davis GL et al. Diversity of Clostridium difficile PCR ribotypes in Europe: results from the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID), 2012 and 2013. Euro Surveill. 2016;21: [CrossRef]
    [Google Scholar]
  13. Rupnik M, Tambic Andrasevic A, Trajkovska Dokic E, Matas I, Jovanovic M et al. Distribution of Clostridium difficile PCR ribotypes and high proportion of 027 and 176 in some hospitals in four South Eastern European countries. Anaerobe 2016;42:142–144 [CrossRef]
    [Google Scholar]
  14. Giancola SE, Williams RJ, Gentry CA. Prevalence of the Clostridium difficile BI/NAP1/027 strain across the United States Veterans Health administration. Clin Microbiol Infect 2018;24:877-881 [CrossRef]
    [Google Scholar]
  15. Aptekorz M, Szczegielniak A, Wiechuła B, Harmanus C, Kuijper E et al. Occurrence of Clostridium difficile ribotype 027 in hospitals of Silesia, Poland. Anaerobe 2017;45:106–113 [CrossRef]
    [Google Scholar]
  16. Karlowsky JA, Adam HJ, Kosowan T, Baxter MR, Nichol KA et al. PCR ribotyping and antimicrobial susceptibility testing of isolates of Clostridium difficile cultured from toxin-positive diarrheal stools of patients receiving medical care in Canadian hospitals: the Canadian Clostridium difficile surveillance study (CAN-DIFF) 2013-2015. Diagn Microbiol Infect Dis 2018;91:105–111 [CrossRef]
    [Google Scholar]
  17. Yakob L, Riley TV, Paterson DL, Marquess J, Magalhaes RJS et al. Mechanisms of hypervirulent Clostridium difficile ribotype 027 displacement of endemic strains: an epidemiological model. Sci Rep 2015;5:12666 [CrossRef]
    [Google Scholar]
  18. Collins J, Robinson C, Danhof H, Knetsch CW, van Leeuwen HC et al. Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature 2018;553:291–294 [CrossRef]
    [Google Scholar]
  19. Bidet P, Barbut F, Lalande V, Burghoffer B, Petit JC. Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol Lett 1999;175:261–266 [CrossRef]
    [Google Scholar]
  20. Martin JSH, Monaghan TM, Wilcox MH. Clostridium difficile infection: epidemiology, diagnosis and understanding transmission. Nat Rev Gastroenterol Hepatol 2016;13:206–216 [CrossRef]
    [Google Scholar]
  21. Knetsch CW, Terveer EM, Lauber C, Gorbalenya AE, Harmanus C et al. Comparative analysis of an expanded Clostridium difficile reference strain collection reveals genetic diversity and evolution through six lineages. Infection, Genetics and Evolution 2012;12:1577–1585 [CrossRef]
    [Google Scholar]
  22. Griffiths D, Fawley W, Kachrimanidou M, Bowden R, Crook DW et al. Multilocus sequence typing of Clostridium difficile. J Clin Microbiol 2010;48:770–778 [CrossRef]
    [Google Scholar]
  23. Vanek J, Hill K, Collins J, Berrington A, Perry J et al. Epidemiological survey of Clostridium difficile ribotypes in the North East of England during an 18-month period. J Hosp Infect 2012;81:209–212 [CrossRef]
    [Google Scholar]
  24. Pituch H, Obuch-Woszczatyński P, Lachowicz D, Wultańska D, Karpiński P et al. Hospital-based Clostridium difficile infection surveillance reveals high proportions of PCR ribotypes 027 and 176 in different areas of Poland, 2011 to 2013. Euro Surveill 2015;20: [CrossRef]
    [Google Scholar]
  25. Krutova M, Matejkova J, Nyc O. C. difficile ribotype 027 or 176?. Folia Microbiol 2014;59:523–526 [CrossRef]
    [Google Scholar]
  26. Eyre DW, Cule ML, Wilson DJ, Griffiths D, Vaughan A et al. Diverse sources of C. difficile infection identified on whole-genome sequencing. N Engl J Med 2013;369:1195–1205 [CrossRef]
    [Google Scholar]
  27. Dingle KE, Griffiths D, Didelot X, Evans J, Vaughan A et al. Clinical Clostridium difficile: clonality and pathogenicity locus diversity. PLoS One 2011;6:e19993 [CrossRef]
    [Google Scholar]
  28. Alam MJ, Walk ST, Endres BT, Basseres E, Khaleduzzaman M et al. Community environmental contamination of toxigenic Clostridium difficile. Open Forum Infect Dis 2017;4: [CrossRef]
    [Google Scholar]
  29. Janezic S, Potocnik M, Zidaric V, Rupnik M. Highly divergent Clostridium difficile strains isolated from the environment. PLoS One 2016;11:e0167101 [CrossRef]
    [Google Scholar]
  30. Moradigaravand D, Gouliouris T, Ludden C, Reuter S, Jamrozy D et al. Genomic survey of Clostridium difficile reservoirs in the East of England implicates environmental contamination of wastewater treatment plants by clinical lineages. Microb Genom 2018;4: [CrossRef]
    [Google Scholar]
  31. Stone NE, Sidak-Loftis LC, Sahl JW, Vazquez AJ, Wiggins KB et al. More than 50% of Clostridium difficile Isolates from Pet Dogs in Flagstaff, USA, Carry Toxigenic Genotypes. PLoS One 2016;11:e0164504 [CrossRef]
    [Google Scholar]
  32. Bartlett JG, Moon N, Chang TW, Taylor N, Onderdonk AB. Role of Clostridium difficile in antibiotic-associated pseudomembranous colitis. Gastroenterology 1978;75:778–782 [CrossRef]
    [Google Scholar]
  33. Larson HE, Price AB, Honour P, Borriello SP. Clostridium difficile and the ætiology of pseudomembranous colitis. The Lancet 1978;311:1063–1066 [CrossRef]
    [Google Scholar]
  34. George RH, Symonds JM, Dimock F, Brown JD, Arabi Y et al. Identification of Clostridium difficile as a cause of pseudomembranous colitis. Br Med J 1978;1:695 [CrossRef]
    [Google Scholar]
  35. Huang H, Weintraub A, Fang H, Nord CE. Antimicrobial resistance in Clostridium difficile. Int J Antimicrob Agents 2009;34:516–522 [CrossRef]
    [Google Scholar]
  36. Spigaglia P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Therapeutic Advances in Infection 2016;3:23–42 [CrossRef]
    [Google Scholar]
  37. Emmerson AM, Jones AM. The quinolones: decades of development and use. J Antimicrob Chemother 2003;51 Suppl 1:13–20 [CrossRef]
    [Google Scholar]
  38. Pépin J, Saheb N, Coulombe M-A, Alary M-E, Corriveau M-P et al. Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis 2005;41:1254–1260 [CrossRef]
    [Google Scholar]
  39. Linder JA, Huang ES, Steinman MA, Gonzales R, Stafford RS. Fluoroquinolone prescribing in the United States: 1995 to 2002. Am J Med 2005;118:259–268 [CrossRef]
    [Google Scholar]
  40. Ackermann G, Tang YJ, Kueper R, Heisig P, Rodloff AC et al. Resistance to moxifloxacin in toxigenic Clostridium difficile isolates is associated with mutations in gyrA. Antimicrob Agents Chemother 2001;45:2348–2353 [CrossRef]
    [Google Scholar]
  41. Dridi L, Tankovic J, Burghoffer B, Barbut F, Petit J-C. gyrA and gyrB mutations are implicated in cross-resistance to ciprofloxacin and moxifloxacin in Clostridium difficile. Antimicrob Agents Chemother 2002;46:3418–3421 [CrossRef]
    [Google Scholar]
  42. McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the infectious diseases Society of America (IDSA) and Society for healthcare epidemiology of America (SheA). Clin Infect Dis 2018;66:e1–e48 [CrossRef]
    [Google Scholar]
  43. Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ. Clostridium difficile infection. Nat Rev Dis Primers 2016;2:16020 [CrossRef]
    [Google Scholar]
  44. Gupta A, Jordan IK, Rishishwar L. stringMLST: a fast k-mer based tool for multilocus sequence typing. Bioinformatics 2017;33:119–121 [CrossRef]
    [Google Scholar]
  45. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef]
    [Google Scholar]
  46. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016;17:132 [CrossRef]
    [Google Scholar]
  47. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped blast and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–3402 [CrossRef]
    [Google Scholar]
  48. Edwards AN, Suárez JM, McBride SM. Culturing and Maintaining Clostridium difficile in an Anaerobic Environment. Journal of Visualized Experiments 2013; [CrossRef]
    [Google Scholar]
  49. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010;26:841–842 [CrossRef]
    [Google Scholar]
  50. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv.org 2013
    [Google Scholar]
  51. Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J et al. GenBank. Nucleic Acids Res 2012;40:D48–D53 [CrossRef]
    [Google Scholar]
  52. Sahl JW, Lemmer D, Travis J, Schupp JM, Gillece JD, Roe C, Smith DE, Williamson CHD, Aziz M et al. NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microb Genom 2016;2:e000074 [CrossRef]
    [Google Scholar]
  53. Huang W, Li L, Myers JR, Marth GT. Art: a next-generation sequencing read simulator. Bioinformatics 2012;28:593–594 [CrossRef]
    [Google Scholar]
  54. Delcher AL, Phillippy A, Carlton J, Salzberg SL. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 2002;30:2478–2483 [CrossRef]
    [Google Scholar]
  55. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015;32:268–274 [CrossRef]
    [Google Scholar]
  56. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017;14:587–589 [CrossRef]
    [Google Scholar]
  57. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018;35:518–522 [CrossRef]
    [Google Scholar]
  58. Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics 2011;27:592–593 [CrossRef]
    [Google Scholar]
  59. Farris JS. The retention index and the RESCALED consistency index. Cladistics 1989;5:417–419 [CrossRef]
    [Google Scholar]
  60. Letunic I, Bork P. Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016;44:W242–W245 [CrossRef]
    [Google Scholar]
  61. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011;43:491–498 [CrossRef]
    [Google Scholar]
  62. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297–1303 [CrossRef]
    [Google Scholar]
  63. Bruen TC, Philippe H, Bryant D. A simple and robust statistical test for detecting the presence of recombination. Genetics 2006;172:2665–2681 [CrossRef]
    [Google Scholar]
  64. Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol 2015;11:e1004041 [CrossRef]
    [Google Scholar]
  65. Rambaut A, Lam TT, Max Carvalho L, Pybus OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol 2016;2:vew007 [CrossRef]
    [Google Scholar]
  66. Murray GGR, Wang F, Harrison EM, Paterson GK, Mather AE et al. The effect of genetic structure on molecular dating and tests for temporal signal. Methods Ecol Evol 2016;7:80–89 [CrossRef]
    [Google Scholar]
  67. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the beast 1.7. Mol Biol Evol 2012;29:1969–1973 [CrossRef]
    [Google Scholar]
  68. Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol Biol Evol 2012;29:2157–2167 [CrossRef]
    [Google Scholar]
  69. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 2013;57:3348–3357 [CrossRef]
    [Google Scholar]
  70. Rasko DA, Myers GSA, Ravel J. Visualization of comparative genomic analyses by blast score ratio. BMC Bioinformatics 2005;6:2 [CrossRef]
    [Google Scholar]
  71. Rasko DA, Rosovitz MJ, Myers GSA, Mongodin EF, Fricke WF et al. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 2008;190:6881–6893 [CrossRef]
    [Google Scholar]
  72. Brouwer MSM, Warburton PJ, Roberts AP, Mullany P, Allan E. Genetic organisation, mobility and predicted functions of genes on integrated, mobile genetic elements in sequenced strains of Clostridium difficile. PLoS One 2011;6:e23014 [CrossRef]
    [Google Scholar]
  73. Mullany P, Allan E, Roberts AP. Mobile genetic elements in Clostridium difficile and their role in genome function. Res Microbiol 2015;166:361–367 [CrossRef]
    [Google Scholar]
  74. Oh H, Edlund C. Mechanism of quinolone resistance in anaerobic bacteria. Clin Microbiol Infect 2003;9:512–517 [CrossRef]
    [Google Scholar]
  75. Edgar RC. Muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004;5:113–113 [CrossRef]
    [Google Scholar]
  76. Sahl JW, Caporaso JG, Rasko DA, Keim P. The large-scale blast score ratio (LS-BSR) pipeline: a method to rapidly compare genetic content between bacterial genomes. PeerJ 2014;2:e332 [CrossRef]
    [Google Scholar]
  77. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010;11:119 [CrossRef]
    [Google Scholar]
  78. Edgar RC. Search and clustering orders of magnitude faster than blast. Bioinformatics 2010;26:2460–2461 [CrossRef]
    [Google Scholar]
  79. Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res 2002;12:656–664 [CrossRef]
    [Google Scholar]
  80. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 2016;34:525–527 [CrossRef]
    [Google Scholar]
  81. Eyre DW, Davies KA, Davis G, Fawley WN, Dingle KE et al. Two distinct patterns of Clostridium difficile diversity across Europe indicating contrasting routes of spread. Clin Infect Dis 2018;67:ciy2521035–1044 [CrossRef]
    [Google Scholar]
  82. Janežič S, Strumbelj I, Rupnik M. Use of modified PCR ribotyping for direct detection of Clostridium difficile ribotypes in stool samples. J Clin Microbiol 2011;49:3024–3025 [CrossRef]
    [Google Scholar]
  83. He M, Sebaihia M, Lawley TD, Stabler RA, Dawson LF et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci U S A 2010;107:7527–7532 [CrossRef]
    [Google Scholar]
  84. Songer JG, Trinh HT, Killgore GE, Thompson AD, McDonald LC et al. Clostridium difficile in retail meat products, USA, 2007. Emerg Infect Dis 2009;15:819–821 [CrossRef]
    [Google Scholar]
  85. Didelot X, Eyre DW, Cule M, Ip CLC, Ansari MA et al. Microevolutionary analysis of Clostridium difficile genomes to investigate transmission. Genome Biol 2012;13:R118 [CrossRef]
    [Google Scholar]
  86. Dridi L, Tankovic J, Petit J-C. CdeA of Clostridium difficile, a new multidrug efflux transporter of the mate family. Microb Drug Resist 2004;10:191–196 [CrossRef]
    [Google Scholar]
  87. Farrow KA, Lyras D, Rood JI. Genomic analysis of the erythromycin resistance element Tn5398 from Clostridium difficile. Microbiology 2001;147:2717–2728 [CrossRef]
    [Google Scholar]
  88. Spigaglia P, Carucci V, Barbanti F, Mastrantonio P, determinants E. ErmB determinants and Tn916-Like elements in clinical isolates of Clostridium difficile. Antimicrob Agents Chemother 2005;49:2550–2553 [CrossRef]
    [Google Scholar]
  89. Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 2006;38:779–786 [CrossRef]
    [Google Scholar]
  90. Coque TM, Singh KV, Weinstock GM, Murray BE. Characterization of dihydrofolate reductase genes from trimethoprim-susceptible and trimethoprim-resistant strains of Enterococcus faecalis. Antimicrob Agents Chemother 1999;43:141–147 [CrossRef]
    [Google Scholar]
  91. Bergmann R, van der Linden M, Chhatwal GS, Nitsche-Schmitz DP. Factors that cause trimethoprim resistance in Streptococcus pyogenes. Antimicrob Agents Chemother 2014;58:2281–2288 [CrossRef]
    [Google Scholar]
  92. Boyd DA, Du T, Hizon R, Kaplen B, Murphy T et al. VanG-type vancomycin-resistant Enterococcus faecalis strains isolated in Canada. Antimicrob Agents Chemother 2006;50:2217–2221 [CrossRef]
    [Google Scholar]
  93. Wasels F, Monot M, Spigaglia P, Barbanti F, Ma L et al. Inter- and intraspecies transfer of a Clostridium difficile conjugative transposon conferring resistance to MLSB. Microb Drug Resist 2014;20:555–560 [CrossRef]
    [Google Scholar]
  94. Riedel T, Wetzel D, Hofmann JD, Plorin SPEO, Dannheim H et al. High metabolic versatility of different toxigenic and non-toxigenic Clostridioides difficile isolates. Int J Med Microbiol 2017;307:311–320 [CrossRef]
    [Google Scholar]
  95. Goudarzi M, Goudarzi H, Alebouyeh M, Azimi Rad M, Shayegan Mehr FS et al. Antimicrobial susceptibility of Clostridium difficile clinical isolates in Iran. Iranian Red Crescent Medical Journal 2013;15:704–711 [CrossRef]
    [Google Scholar]
  96. Chow VCY, Kwong TNY, So EWM, Ho YII, Wong SH et al. Surveillance of antibiotic resistance among common Clostridium difficile ribotypes in Hong Kong. Sci Rep 2017;7:17218 [CrossRef]
    [Google Scholar]
  97. Knetsch CW, Hensgens MPM, Harmanus C, van der Bijl MW, Savelkoul PHM et al. Genetic markers for Clostridium difficile lineages linked to hypervirulence. Microbiology 2011;157:3113–3123 [CrossRef]
    [Google Scholar]
  98. Kansau I, Barketi-Klai A, Monot M, Hoys S, Dupuy B et al. Deciphering adaptation strategies of the epidemic Clostridium difficile 027 strain during infection through in vivo transcriptional analysis. PLoS One 2016;11:e0158204 [CrossRef]
    [Google Scholar]
  99. Jhung MA, Thompson AD, Killgore GE, Zukowski WE, Songer G et al. Toxinotype V Clostridium difficile in humans and food animals. Emerg Infect Dis 2008;14:1039–1045 [CrossRef]
    [Google Scholar]
  100. Goorhuis A, Bakker D, Corver J, Debast SB, Harmanus C et al. Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 2008;47:1162–1170 [CrossRef]
    [Google Scholar]
  101. Bauer MP, Notermans DW, van Benthem BHB, Brazier JS, Wilcox MH et al. Clostridium difficile infection in Europe: a hospital-based survey. The Lancet 2011;377:63–73 [CrossRef]
    [Google Scholar]
  102. Keel K, Brazier JS, Post KW, Weese S, Songer JG. Prevalence of PCR ribotypes among Clostridium difficile isolates from pigs, calves, and other species. J Clin Microbiol 2007;45:1963–1964 [CrossRef]
    [Google Scholar]
  103. Burt SA, Siemeling L, Kuijper EJ, Lipman LJA. Vermin on pig farms are vectors for Clostridium difficile PCR ribotypes 078 and 045. Vet Microbiol 2012;160:256–258 [CrossRef]
    [Google Scholar]
  104. Weese JS. Clostridium difficile in food-innocent bystander or serious threat?. Clin Microbiol Infect 2010;16:3–10 [CrossRef]
    [Google Scholar]
  105. Stone NE, Nunnally AE, Jimenez V, Cope EK, Sahl JW et al. Domestic canines do not display evidence of gut microbial dysbiosis in the presence of Clostridioides (Clostridium) difficile, despite cellular susceptibility to its toxins. Anaerobe 2019; [CrossRef]
    [Google Scholar]
  106. Galinier A, Deutscher J. Sophisticated regulation of transcriptional factors by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Mol Biol 2017;429:773–789 [CrossRef]
    [Google Scholar]
  107. Chen J-W, Scaria J, Mao C, Sobral B, Zhang S et al. Proteomic comparison of historic and recently emerged hypervirulent Clostridium difficile strains. J Proteome Res 2013;12:1151–1161 [CrossRef]
    [Google Scholar]
  108. Scaria J, Mao C, Chen J-W, McDonough SP, Sobral B et al. Differential stress transcriptome landscape of historic and recently emerged hypervirulent strains of Clostridium difficile strains determined using RNA-seq. PLoS One 2013;8:e78489 [CrossRef]
    [Google Scholar]
  109. Xiao M, Kong F, Jin P, Wang Q, Xiao K et al. Comparison of two capillary gel electrophoresis systems for Clostridium difficile ribotyping, using a panel of ribotype 027 isolates and whole-genome sequences as a reference standard. J Clin Microbiol 2012;50:2755–2760 [CrossRef]
    [Google Scholar]
  110. Valiente E, Cairns MD, Wren BW. The Clostridium difficile PCR ribotype 027 lineage: a pathogen on the move. Clin Microbiol Infect 2014;20:396–404 [CrossRef]
    [Google Scholar]
  111. Pearson T, Busch JD, Ravel J, Read TD, Rhoton SD et al. Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing. Proc Natl Acad Sci U S A 2004;101:13536–13541 [CrossRef]
    [Google Scholar]
  112. McLure A, Clements ACA, Kirk M, Glass K. Healthcare-associated Clostridium difficile infections are sustained by disease from the community. Bull Math Biol 2017;79:2242–2257 [CrossRef]
    [Google Scholar]
  113. Leffler DA, Lamont JT. Clostridium difficile infection. N Engl J Med 2015;372:1539–1548 [CrossRef]
    [Google Scholar]
  114. Bakker D, Corver J, Harmanus C, Goorhuis A, Keessen EC et al. Relatedness of human and animal Clostridium difficile PCR ribotype 078 isolates determined on the basis of multilocus variable-number tandem-repeat analysis and tetracycline resistance. J Clin Microbiol 2010;48:3744–3749 [CrossRef]
    [Google Scholar]
  115. Knetsch CW, Kumar N, Forster SC, Connor TR, Browne HP et al. Zoonotic transfer of Clostridium difficile harboring antimicrobial resistance between farm animals and humans. J Clin Microbiol 2018;56:e01384–01317 [CrossRef]
    [Google Scholar]
  116. Dingle KE et al. A role for tetracycline selection in the evolution of Clostridium difficile PCR-ribotype 078. bioRxiv 2018;262352:
    [Google Scholar]
  117. Xu C, Weese JS, Flemming C, Odumeru J, Warriner K. Fate of Clostridium difficile during wastewater treatment and incidence in Southern Ontario watersheds. Journal of Applied Microbiology 2014;117:891–904 [CrossRef]
    [Google Scholar]
  118. Moran NA. Microbial minimalism: genome reduction in bacterial pathogens. Cell 2002;108:583–586
    [Google Scholar]
  119. Stinear TP, Seemann T, Pidot S, Frigui W, Reysset G et al. Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer. Genome Res 2007;17:192–200 [CrossRef]
    [Google Scholar]
  120. Drudy D, Goorhuis B, Bakker D, Kyne L, van den Berg R et al. Clindamycin-resistant clone of Clostridium difficile PCR ribotype 027, Europe. Emerg Infect Dis 2008;14:1485–1487 [CrossRef]
    [Google Scholar]
  121. Sahl JW, Steinsland H, Redman JC, Angiuoli SV, Nataro JP et al. A comparative genomic analysis of diverse clonal types of enterotoxigenic Escherichia coli reveals pathovar-specific conservation. Infect Immun 2011;79:950–960 [CrossRef]
    [Google Scholar]
  122. Williamson CHD, Sanchez A, Gutman J, Sahl JW. Bacterial genome reduction as a result of short read sequence data. biorXiv 2016
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000271
Loading
/content/journal/mgen/10.1099/mgen.0.000271
Loading

Data & Media loading...

Supplementary material 1

PDF

Supplementary material 1

Supplementary material 1

Supplementary material 1

Supplementary material 1

Supplementary material 1

Supplementary material 1

Supplementary material 1

Supplementary material 1

Supplementary material 1

Supplementary material 1

Supplementary material 1

Supplementary material 1

Supplementary material 1

Supplementary material 1

Supplementary material 1

Supplementary material 1

Supplementary material 1

Supplementary material 1

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error