1887

Abstract

Shigella species are a major cause of gastroenteritis worldwide, and Shigella sonnei is the most common species isolated within the United States. Previous surveillance work in Pennsylvania documented increased antimicrobial resistance (AMR) in S. sonnei associated with reported illnesses. The present study examined a subset of these isolates by whole genome sequencing (WGS) to determine the relationship between domestic and international isolates, to identify genes that may be useful for identifying specific Global Lineages of S. sonnei and to test the accuracy of WGS for predicting AMR phenotype. A collection of 22 antimicrobial-resistant isolates from patients infected within the United States or while travelling internationally between 2009 and 2014 was chosen for WGS. Phylogenetic analysis revealed both international and domestic isolates were one of two previously defined Global Lineages of S. sonnei , designated Lineage II and Lineage III. Twelve of 17 alleles tested distinguish these two lineages. Lastly, genome analysis was used to identify AMR determinants. Genotypic analysis was concordant with phenotypic resistance for six of eight antibiotic classes. For aminoglycosides and trimethoprim, resistance genes were identified in two and three phenotypically sensitive isolates, respectively. This article contains data hosted by Microreact.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000270
2019-05-17
2019-09-17
Loading full text...

Full text loading...

/deliver/fulltext/mgen/5/5/mgen000270.html?itemId=/content/journal/mgen/10.1099/mgen.0.000270&mimeType=html&fmt=ahah

References

  1. Centers for Disease Control and Prevention CDC Yellow Book 2018: Health Information for International Travel New York: Oxford University Press; 2017
    [Google Scholar]
  2. Centers for Disease Control and Prevention Antibiotic resistance threats in the United States, 2013. 2013
  3. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A et al. Foodborne illness acquired in the United States-major pathogens. Emerg Infect Dis 2011;17:7–15 [CrossRef]
    [Google Scholar]
  4. European Centre for Disease Prevention and Control Annual Epidemiological Report 2016 - Shigellosis [Internet], [cited 2018 Feb 16]. Stockholm: ECDC; 2016;https://ecdc.europa.eu/sites/portal/files/documents/Shigellosis-annual-epidemiological-report-for-2014_0.pdf
    [Google Scholar]
  5. Kotloff KL, Winickoff JP, Ivanoff B, Clemens JD, Swerdlow DL et al. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ 1999;77:651–666
    [Google Scholar]
  6. Thompson CN, Duy PT, Baker S. The rising dominance of Shigella sonnei: an intercontinental shift in the etiology of bacillary dysentery. Clements ACA, editor PLoS Negl Trop Dis 2015;9:e0003708 [CrossRef]
    [Google Scholar]
  7. Baker KS, Campos J, Pichel M, Della Gaspera A, Duarte-Martínez F et al. Whole genome sequencing of Shigella sonnei through PulseNet Latin America and Caribbean: advancing global surveillance of foodborne illnesses. Clin Microbiol Infect 2017;23:845–853 [CrossRef]
    [Google Scholar]
  8. Holt KE, Baker S, Weill F-X, Holmes EC, Kitchen A et al. Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nat Genet 2012;44:1056–1059 [CrossRef]
    [Google Scholar]
  9. Kozyreva VK, Jospin G, Greninger AL, Watt JP, Eisen JA et al. Recent outbreaks of Shigellosis in california caused by two distinct populations of Shigella sonnei with either increased virulence or fluoroquinolone resistance. mSphere 2016;1:e00344–16 [CrossRef]
    [Google Scholar]
  10. Centers for Disease Control and Prevention National Antimicrobial Resistance Monitoring System for Enteric BacteRia (Narms): Human Isolates Surveillance RepOrt for 2015 (Final Report) [Internet], [cited 2018 Oct 19]. Atlanta: 2018; Available fromhttp://www.cdc.gov/narms/pdf/2015-NARMS-Annual-Report-cleared_508.pdf
    [Google Scholar]
  11. Stoesser N, Batty EM, Eyre DW, Morgan M, Wyllie DH et al. Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data. J Antimicrob Chemother 2013;68:2234–2244 [CrossRef]
    [Google Scholar]
  12. Zhao S, Tyson GH, Chen Y, Li C, Mukherjee S et al. Whole-genome sequencing analysis accurately predicts antimicrobial resistance phenotypes in Campylobacter spp. Appl Environ Microbiol 2016;82:459–466 [CrossRef]
    [Google Scholar]
  13. Tyson GH, McDermott PF, Li C, Chen Y, Tadesse DA et al. WGS accurately predicts antimicrobial resistance in Escherichia coli. J Antimicrob Chemother 2015;70:2763–2769 [CrossRef]
    [Google Scholar]
  14. McDermott PF, Tyson GH, Kabera C, Chen Y, Li C et al. Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal Salmonella. Antimicrob Agents Chemother 2016;60:5515–5520 [CrossRef]
    [Google Scholar]
  15. Sadouki Z, Day MR, Doumith M, Chattaway MA, Dallman TJ et al. Comparison of phenotypic and WGS-derived antimicrobial resistance profiles of Shigella sonnei isolated from cases of diarrhoeal disease in England and Wales, 2015. J Antimicrob Chemother 2017;72:2496–2502 [CrossRef]
    [Google Scholar]
  16. YL L, Tewari D, Yealy CC, Fardig D, M’ikanatha NM. Surveillance for travel and domestically acquired multidrug-resistant human Shigella infections—Pennsylvania, 2006-2014. Heal Secur 2016;14:143–151
    [Google Scholar]
  17. Clinical and Laboratory Standards InstituteCLSI supplement M100 In: Performance Standards for Antimicrobial Susceptibility Testing, 25th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2015
    [Google Scholar]
  18. Andrews S. 2010; FastQC [Internet]. Babraham bioinformatics. Available from:https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
    [Google Scholar]
  19. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef]
    [Google Scholar]
  20. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013;29:1072–1075 [CrossRef]
    [Google Scholar]
  21. Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 2009;25:1754–1760 [CrossRef]
    [Google Scholar]
  22. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009;25:2078–2079 [CrossRef]
    [Google Scholar]
  23. Centers for Disease and Prevention wgMLST database Qc metrics summary table. 2017
  24. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: Architecture and applications. BMC Bioinformatics 2009;10:421 [CrossRef]
    [Google Scholar]
  25. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012;67:2640–2644 [CrossRef]
    [Google Scholar]
  26. Petkau A, Mabon P, Sieffert C, Knox NC, Cabral J et al. SNVPhyl: a single nucleotide variant phylogenomics pipeline for microbial genomic epidemiology. Microb Genom 2017;3:e000116 [CrossRef]
    [Google Scholar]
  27. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010;59:307–321 [CrossRef]
    [Google Scholar]
  28. Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J et al. Microreact: visualizing and sharing data for genomic Epidemiology and phylogeography. Microb Genom 2016;2:e000093 [CrossRef]
    [Google Scholar]
  29. SRA Toolkit Documentation 2017; NCBI. Available fromhttps://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc
  30. Pettengill EA, Pettengill JB, Binet R. Phylogenetic analyses of Shigella and enteroinvasive Escherichia coli for the identification of molecular epidemiological markers: whole-genome comparative analysis does not support distinct genera designation. Front Microbiol 2015;6:1573 [CrossRef]
    [Google Scholar]
  31. Joensen KG, Tetzschner AMM, Iguchi A, Aarestrup FM, Scheutz F. Rapid and Easy In Silico Serotyping of Escherichia coli isolates by use of whole-genome sequencing data. J Clin Microbiol 2015;53:2410–2426 [CrossRef]
    [Google Scholar]
  32. Miranda A, Ávila B, Díaz P, Rivas L, Bravo K et al. Emergence of plasmid-borne dfrA14 trimethoprim resistance gene in Shigella sonnei. Front Cell Infect Microbiol 2016;6:77 [CrossRef]
    [Google Scholar]
  33. Holt KE, Thieu Nga TV, Thanh DP, Vinh H, Kim DW et al. Tracking the establishment of local endemic populations of an emergent enteric pathogen. Proc Natl Acad Sci U S A 2013;110:17522–17527 [CrossRef]
    [Google Scholar]
  34. Chung The H, Rabaa MA, Pham Thanh D, De Lappe N, Cormican M et al. South Asia as a reservoir for the global spread of ciprofloxacin-resistant Shigella sonnei: A cross-sectional study. PLoS Med 2016;13:e1002055 [Internet] [CrossRef]
    [Google Scholar]
  35. Hirose K, Terajima J, Izumiya H, Tamura K, Arakawa E et al. Antimicrobial susceptibility of Shigella sonnei isolates in Japan and molecular analysis of S. sonnei isolates with reduced susceptibility to fluoroquinolones. Antimicrob Agents Chemother 2005;49:1203–1205 [CrossRef]
    [Google Scholar]
  36. Sangal V, Holt KE, Yuan J, Brown DJ, Filliol-Toutain I et al. Global phylogeny of Shigella sonnei strains from limited single nucleotide polymorphisms (SNPs) and development of a rapid and cost-effective SNP-typing scheme for strain identification by high-resolution melting analysis. J Clin Microbiol 2013;51:303–305 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000270
Loading
/content/journal/mgen/10.1099/mgen.0.000270
Loading

Data & Media loading...

Supplementary material 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error