1887

Abstract

The concept of the species ‘pan-genome’, the union of ‘core’ conserved genes and all ‘accessory’ non-conserved genes across all strains of a species, was first proposed in prokaryotes to account for intraspecific variability. Species pan-genomes have been extensively studied in prokaryotes, but evidence of species pan-genomes has also been demonstrated in eukaryotes such as plants and fungi. Using a previously published methodology based on sequence homology and conserved microsynteny, in addition to bespoke pipelines, we have investigated the pan-genomes of four model fungal species: Saccharomyces cerevisiae, Candida albicans, Cryptococcus neoformans var. grubii and Aspergillus fumigatus. Between 80 and 90 % of gene models per strain in each of these species are core genes that are highly conserved across all strains of that species, many of which are involved in housekeeping and conserved survival processes. In many of these species, the remaining ‘accessory’ gene models are clustered within subterminal regions and may be involved in pathogenesis and antimicrobial resistance. Analysis of the ancestry of species core and accessory genomes suggests that fungal pan-genomes evolve by strain-level innovations such as gene duplication as opposed to wide-scale horizontal gene transfer. Our findings lend further supporting evidence to the existence of species pan-genomes in eukaryote taxa.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000243
2019-02-04
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/mgen/5/2/mgen000243.html?itemId=/content/journal/mgen/10.1099/mgen.0.000243&mimeType=html&fmt=ahah

References

  1. Parfrey LW, Lahr DJG, Katz LA. The dynamic nature of eukaryotic genomes. Mol Biol Evol 2008;25:787–794 [CrossRef]
    [Google Scholar]
  2. Rouli L, Merhej V, Fournier PE, Raoult D. The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes New Infect 2015;7:72–85 [CrossRef][PubMed]
    [Google Scholar]
  3. Diene SM, Merhej V, Henry M, El Filali A, Roux V et al. The rhizome of the multidrug-resistant Enterobacter aerogenes genome reveals how new “killer bugs” are created because of a sympatric lifestyle. Mol Biol Evol 2013;30:369–383 [CrossRef]
    [Google Scholar]
  4. Lefébure T, Pavinski Bitar PD, Suzuki H, Stanhope MJ. Evolutionary dynamics of complete Campylobacter pan-genomes and the bacterial species concept. Genome Biol Evol 2010;2:646–655 [CrossRef]
    [Google Scholar]
  5. Snipen L, Almøy T, Ussery DW. Microbial comparative pan-genomics using binomial mixture models. BMC Genomics 2009;10:385 [CrossRef]
    [Google Scholar]
  6. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". Proc Natl Acad Sci USA 2005;102:13950–13955 [CrossRef]
    [Google Scholar]
  7. Hogg JS, Hu FZ, Janto B, Boissy R, Hayes J et al. Characterization and modeling of the Haemophilus influenzae core and supragenomes based on the complete genomic sequences of Rd and 12 clinical nontypeable strains. Genome Biol 2007;8:R103 [CrossRef]
    [Google Scholar]
  8. Young JPW, Crossman LC, Johnston AWB, Thomson NR, Ghazoui ZF et al. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 2006;7:R34 [CrossRef]
    [Google Scholar]
  9. Boissy R, Ahmed A, Janto B, Earl J, Hall BG et al. Comparative supragenomic analyses among the pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae using a modification of the finite supragenome model. BMC Genomics 2011;12:187 [CrossRef]
    [Google Scholar]
  10. Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF et al. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 2008;190:6881–6893 [CrossRef][PubMed]
    [Google Scholar]
  11. Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ. Biogeography of the Sulfolobus islandicus pan-genome. Proc Natl Acad Sci USA 2009;106:8605–8610 [CrossRef][PubMed]
    [Google Scholar]
  12. Marcus S, Lee H, Schatz MC. SplitMEM: a graphical algorithm for pan-genome analysis with suffix skips. Bioinformatics 2014;30:3476–3483 [CrossRef]
    [Google Scholar]
  13. Song G, Dickins BJA, Demeter J, Engel S, Dunn B et al. AGAPE (Automated Genome Analysis PipelinE) for pan-genome analysis of Saccharomyces cerevisiae. PLoS One 2015;10:e0120671 [CrossRef]
    [Google Scholar]
  14. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015;31:3691–3693 [CrossRef]
    [Google Scholar]
  15. Jandrasits C, Dabrowski PW, Fuchs S, Renard BY. seq-seq-pan: building a computational pan-genome data structure on whole genome alignment. BMC Genomics 2018;19:47 [CrossRef]
    [Google Scholar]
  16. Chaudhari NM, Gupta VK, Dutta C. BPGA - an ultra-fast pan-genome analysis pipeline. Sci Rep 2016;6:24373 [CrossRef]
    [Google Scholar]
  17. Engel SR, Cherry JM. The new modern era of yeast genomics: community sequencing and the resulting annotation of multiple Saccharomyces cerevisiae strains at the Saccharomyces Genome Database. Database 2013;2013:bat012 [CrossRef]
    [Google Scholar]
  18. Wei W, McCusker JH, Hyman RW, Jones T, Ning Y et al. Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc Natl Acad Sci USA 2007;104:12825–12830 [CrossRef][PubMed]
    [Google Scholar]
  19. Gu Z, David L, Petrov D, Jones T, Davis RW et al. Elevated evolutionary rates in the laboratory strain of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2005;102:1092–1097 [CrossRef][PubMed]
    [Google Scholar]
  20. Ronald J, Tang H, Brem RB. Genomewide evolutionary rates in laboratory and wild yeast. Genetics 2006;174:541–544 [CrossRef][PubMed]
    [Google Scholar]
  21. Golicz AA, Batley J, Edwards D. Towards plant pangenomics. Plant Biotechnol J 2016;14:1099–1105 [CrossRef]
    [Google Scholar]
  22. Lapierre P, Gogarten JP. Estimating the size of the bacterial pan-genome. Trends in Genetics 2009;25:107–110 [CrossRef]
    [Google Scholar]
  23. McInerney JO, McNally A, O'Connell MJ. Why prokaryotes have pangenomes. Nat Microbiol 2017;2:17040 [CrossRef]
    [Google Scholar]
  24. Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 2008;9:605–618 [CrossRef]
    [Google Scholar]
  25. Ku C, Martin WF. A natural barrier to lateral gene transfer from prokaryotes to eukaryotes revealed from genomes: the 70 % rule. BMC Biol 2016;14:89 [CrossRef]
    [Google Scholar]
  26. Martin WF. Too much eukaryote LGT. Bioessays 2017;39:1700115 [CrossRef]
    [Google Scholar]
  27. Golicz AA, Bayer PE, Barker GC, Edger PP, Kim H et al. The pangenome of an agronomically important crop plant Brassica oleracea. Nat Commun 2016;7:13390 [CrossRef]
    [Google Scholar]
  28. Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H et al. The pangenome of hexaploid bread wheat. Plant J 2017;90:1007–1013 [CrossRef][PubMed]
    [Google Scholar]
  29. Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G et al. Insights into the maize pan-genome and pan-transcriptome. Plant Cell 2014;26:121–135 [CrossRef]
    [Google Scholar]
  30. Zhou P, Silverstein KAT, Ramaraj T, Guhlin J, Denny R et al. Exploring structural variation and gene family architecture with de novo assemblies of 15 Medicago genomes. BMC Genomics 2017;18:261 [CrossRef]
    [Google Scholar]
  31. Gordon SP, Contreras-Moreira B, Woods DP, des Marais DL, Burgess D et al. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat Commun 2017;8:2184 [CrossRef]
    [Google Scholar]
  32. Li YH, Zhou G, Ma J, Jiang W, Jin LG et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 2014;32:1045–1052 [CrossRef][PubMed]
    [Google Scholar]
  33. Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC et al. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 2013;499:209–213 [CrossRef]
    [Google Scholar]
  34. Bergström A, Simpson JT, Salinas F, Barré B, Parts L et al. A high-definition view of functional genetic variation from natural yeast genomes. Mol Biol Evol 2014;31:872–888 [CrossRef][PubMed]
    [Google Scholar]
  35. Dunn B, Richter C, Kvitek DJ, Pugh T, Sherlock G. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Res 2012;22:908–924 [CrossRef]
    [Google Scholar]
  36. Peter J, de Chiara M, Friedrich A, Yue JX, Pflieger D et al. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 2018;556:339–344 [CrossRef][PubMed]
    [Google Scholar]
  37. Plissonneau C, Hartmann FE, Croll D. Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. BMC Biol 2018;16:5 [CrossRef]
    [Google Scholar]
  38. Fouts DE, Brinkac L, Beck E, Inman J, Sutton G. PanOCT: automated clustering of orthologs using conserved gene neighborhood for pan-genomic analysis of bacterial strains and closely related species. Nucleic Acids Res 2012;40:e172e172 [CrossRef]
    [Google Scholar]
  39. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009;25:1422–1423 [CrossRef]
    [Google Scholar]
  40. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B et al. Life with 6000 genes. Science 1996;274:546–567 [CrossRef]
    [Google Scholar]
  41. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S et al. The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 2004;101:7329–7334 [CrossRef][PubMed]
    [Google Scholar]
  42. Janbon G, Ormerod KL, Paulet D, Byrnes EJ, Yadav V et al. Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation. PLoS Genet 2014;10:e1004261 [CrossRef]
    [Google Scholar]
  43. Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 2005;438:1151–1156 [CrossRef]
    [Google Scholar]
  44. Slater G, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 2005;6:31 [CrossRef]
    [Google Scholar]
  45. Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res 2008;18:1979–1990 [CrossRef]
    [Google Scholar]
  46. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 2013;8:1494–1512 [CrossRef]
    [Google Scholar]
  47. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009;10:421 [CrossRef]
    [Google Scholar]
  48. Skrzypek MS, Binkley J, Binkley G, Miyasato SR, Simison M et al. The Candida genome database (CGD): incorporation of assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res 2017;45:D592–D596 [CrossRef]
    [Google Scholar]
  49. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015;31:3210–3212 [CrossRef]
    [Google Scholar]
  50. Strope PK, Skelly DA, Kozmin SG, Mahadevan G, Stone EA et al. The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Res 2015;25:762–774 [CrossRef][PubMed]
    [Google Scholar]
  51. Novo M, Bigey F, Beyne E, Galeote V, Gavory F et al. Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci USA 2009;106:16333–16338 [CrossRef][PubMed]
    [Google Scholar]
  52. Rasko DA, Myers GSA, Ravel J. Visualization of comparative genomic analyses by BLAST score ratio. BMC Bioinformatics 2005;6:2 [CrossRef]
    [Google Scholar]
  53. Deniélou YP, Sagot MF, Boyer F, Viari A. Bacterial syntenies: an exact approach with gene quorum. BMC Bioinformatics 2011;12:193 [CrossRef][PubMed]
    [Google Scholar]
  54. Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: visualization of intersecting sets. IEEE Trans Vis Comput Graph 2014;20:1983–1992 [CrossRef]
    [Google Scholar]
  55. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 2017;33:2938–2940 [CrossRef]
    [Google Scholar]
  56. R Core Team R: A Language and Environment for Statistical Computing Vienna, Austria: R Foundation for Statistical Computing; 2013
    [Google Scholar]
  57. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004;5:113 [CrossRef]
    [Google Scholar]
  58. Swofford LD. PAUP*:Phylogenetic Analysis Using Parsimony (* and Other Methods) Sunderland, MA, USA: Sinauer Associates; 2002
    [Google Scholar]
  59. Kück P, Meusemann K. FASconCAT: convenient handling of data matrices. Mol Phylogenet Evol 2010;56:1115–1118 [CrossRef]
    [Google Scholar]
  60. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010;5:e9490 [CrossRef][PubMed]
    [Google Scholar]
  61. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016;44:W242–W245 [CrossRef][PubMed]
    [Google Scholar]
  62. Farris JS. Phylogenetic analysis under Dollo’s law. Syst Biol 1977;26:77–88 [CrossRef]
    [Google Scholar]
  63. Csűös M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 2010;26:1910–1912 [CrossRef]
    [Google Scholar]
  64. Jones P, Binns D, Chang HY, Fraser M, Li W et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014;30:1236–1240 [CrossRef][PubMed]
    [Google Scholar]
  65. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 2016;44:D279–D285 [CrossRef]
    [Google Scholar]
  66. Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK et al. InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 2012;40:D306–D312 [CrossRef]
    [Google Scholar]
  67. Carbon S, Dietze H, Lewis SE, Mungall CJ, Munoz-Torres MC et al. Expansion of the gene ontology knowledgebase and resources:the gene ontology consortium. Nucleic Acids Res 2017;45:D331–D338
    [Google Scholar]
  68. Agresti A. Categorical Data Analysis Hoboken, NJ: John Wiley & Sons, Inc; 2002; [CrossRef]
    [Google Scholar]
  69. Klopfenstein DV, Zhang L, Pedersen BS, Ramírez F, Warwick Vesztrocy A et al. GOATOOLS: a Python library for Gene Ontology analyses. Sci Rep 2018;8:10872 [CrossRef]
    [Google Scholar]
  70. Cotton JA, McInerney JO. Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function. Proc Natl Acad Sci USA 2010;107:17252–17255 [CrossRef]
    [Google Scholar]
  71. McCarthy CGP, Fitzpatrick DA. Systematic search for evidence of interdomain horizontal gene transfer from prokaryotes to oomycete lineages. mSphere 2016;1:e00195-16 [CrossRef][PubMed]
    [Google Scholar]
  72. Wolfe D, Dudek S, Ritchie MD, Pendergrass SA. Visualizing genomic information across chromosomes with PhenoGram. BioData Min 2013;6:18 [CrossRef]
    [Google Scholar]
  73. Giaever G, Nislow C. The yeast deletion collection: a decade of functional genomics. Genetics 2014;197:451–465 [CrossRef][PubMed]
    [Google Scholar]
  74. Hall C, Dietrich FS. The reacquisition of biotin prototrophy in Saccharomyces cerevisiae involved horizontal gene transfer, gene duplication and gene clustering. Genetics 2007;177:2293–2307 [CrossRef][PubMed]
    [Google Scholar]
  75. Lind AL, Lim FY, Soukup AA, Keller NP, Rokas A. An LaeA- and BrlA-dependent cellular network governs tissue-specific secondary metabolism in the human pathogen Aspergillus fumigatus. mSphere 2018;3:e0005018 [CrossRef]
    [Google Scholar]
  76. Warringer J, Zörgö E, Cubillos FA, Zia A, Gjuvsland A et al. Trait variation in yeast is defined by population history. PLoS Genet 2011;7:e1002111 [CrossRef][PubMed]
    [Google Scholar]
  77. Knox BP, Blachowicz A, Palmer JM, Romsdahl J, Huttenlocher A et al. Characterization of Aspergillus fumigatus isolates from air and surfaces of the International Space Station. mSphere 2016;1:e00227-16 [CrossRef][PubMed]
    [Google Scholar]
  78. McCarthy CGP, Fitzpatrick DA. Multiple approaches to phylogenomic reconstruction of the fungal kingdom. In Advances in Genetics 2017; pp.211–266
    [Google Scholar]
  79. Wolfe KH. Origin of the yeast whole-genome duplication. PLoS Biol 2015;13:e1002221 [CrossRef]
    [Google Scholar]
  80. Santos MAS, Tuite MF. The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic Acids Res 1995;23:1481–1486 [CrossRef]
    [Google Scholar]
  81. Stajich JE, Dietrich FS, Roy SW. Comparative genomic analysis of fungal genomes reveals intron-rich ancestors. Genome Biol 2007;8:R223 [CrossRef]
    [Google Scholar]
  82. Gonzalez-Hilarion S, Paulet D, Lee KT, Hon CC, Lechat P et al. Intron retention-dependent gene regulation in Cryptococcus neoformans. Sci Rep 2016;6:32252 [CrossRef][PubMed]
    [Google Scholar]
  83. Liti G, Carter DM, Moses AM, Warringer J, Parts L et al. Population genomics of domestic and wild yeasts. Nature 2009;458:337–341 [CrossRef]
    [Google Scholar]
  84. Yue JX, Li J, Aigrain L, Hallin J, Persson K et al. Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nat Genet 2017;49:913–924 [CrossRef][PubMed]
    [Google Scholar]
  85. Lockhart SR, Pujol C, Daniels KJ, Miller MG, Johnson AD et al. In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics 2002;162:737–745[PubMed]
    [Google Scholar]
  86. Fraser JA, Huang JC, Pukkila-Worley R, Alspaugh JA, Mitchell TG et al. Chromosomal translocation and segmental duplication in Cryptococcus neoformans. Eukaryot Cell 2005;4:401–406 [CrossRef]
    [Google Scholar]
  87. Wisecaver JH, Slot JC, Rokas A. The evolution of fungal metabolic pathways. PLoS Genet 2014;10:e1004816 [CrossRef]
    [Google Scholar]
  88. Cheon SA, Jung KW, Bahn YS, Kang HA. The unfolded protein response (UPR) pathway in Cryptococcus. Virulence 2014;5:341–350 [CrossRef][PubMed]
    [Google Scholar]
  89. Lengeler KB, Davidson RC, D'Souza C, Harashima T, Shen WC et al. Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 2000;64:746–785 [CrossRef][PubMed]
    [Google Scholar]
  90. Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC et al. SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 2010;47:736–741 [CrossRef]
    [Google Scholar]
  91. Andersen MR, Nielsen JB, Klitgaard A, Petersen LM, Zachariasen M et al. Accurate prediction of secondary metabolite gene clusters in filamentous fungi. Proc Natl Acad Sci USA 2013;110:E99E107 [CrossRef]
    [Google Scholar]
  92. McDonagh A, Fedorova ND, Crabtree J, Yu Y, Kim S et al. Sub-telomere directed gene expression during initiation of invasive aspergillosis. PLoS Pathog 2008;4:e1000154 [CrossRef][PubMed]
    [Google Scholar]
  93. Richards TA, Soanes DM, Jones MDM, Vasieva O, Leonard G et al. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proc Natl Acad Sci USA 2011;108:15258–15263 [CrossRef]
    [Google Scholar]
  94. Marcet-Houben M, Gabaldón T. Acquisition of prokaryotic genes by fungal genomes. Trends Genet 2010;26:5–8 [CrossRef]
    [Google Scholar]
  95. Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science 2000;290:1151–1155 [CrossRef][PubMed]
    [Google Scholar]
  96. Treangen TJ, Rocha EP. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet 2011;7:e1001284 [CrossRef][PubMed]
    [Google Scholar]
  97. Yang E, Hulse AM, Cai JJ. Evolutionary analysis of sequence divergence and diversity of duplicate genes in Aspergillus fumigatus. Evol Bioinform Online 2012;8:623–644 [CrossRef][PubMed]
    [Google Scholar]
  98. Perez-Nadales E, Nogueira MF, Baldin C, Castanheira S, El Ghalid M et al. Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genet Biol 2014;70:42–67 [CrossRef][PubMed]
    [Google Scholar]
  99. Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P et al. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 2008;4:e1000046 [CrossRef]
    [Google Scholar]
  100. Croll D, Lendenmann MH, Stewart E, McDonald BA. The impact of recombination hotspots on genome evolution of a fungal plant pathogen. Genetics 2015;201:1213–1228 [CrossRef][PubMed]
    [Google Scholar]
  101. Schmidt KH, Viebranz E, Doerfler L, Lester C, Rubenstein A. Formation of complex and unstable chromosomal translocations in yeast. PLoS One 2010;5:e12007 [CrossRef][PubMed]
    [Google Scholar]
  102. Colson I, Delneri D, Oliver SG. Effects of reciprocal chromosomal translocations on the fitness of Saccharomyces cerevisiae. EMBO Rep 2004;5:392–398 [CrossRef]
    [Google Scholar]
  103. Hou J, Friedrich A, de Montigny J, Schacherer J. Chromosomal rearrangements as a major mechanism in the onset of reproductive isolation in Saccharomyces cerevisiae. Curr Biol 2014;24:1153–1159 [CrossRef][PubMed]
    [Google Scholar]
  104. Giaever G, Chu AM, Ni L, Connelly C, Riles L et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 2002;418:387–391 [CrossRef]
    [Google Scholar]
  105. Slot JC, Rokas A. Multiple GAL pathway gene clusters evolved independently and by different mechanisms in fungi. Proc Natl Acad Sci USA 2010;107:10136–10141 [CrossRef]
    [Google Scholar]
  106. Naseeb S, Delneri D. Impact of chromosomal inversions on the yeast DAL cluster. PLoS One 2012;7:e42022 [CrossRef][PubMed]
    [Google Scholar]
  107. Maciaszczyk E, Wysocki R, Golik P, Lazowska J, Ulaszewski S. Arsenical resistance genes in Saccharomyces douglasii and other yeast species undergo rapid evolution involving genomic rearrangements and duplications. FEMS Yeast Res 2004;4:821–832 [CrossRef][PubMed]
    [Google Scholar]
  108. Keller NP, Turner G, Bennett JW. Fungal secondary metabolism — from biochemistry to genomics. Nat Rev Microbiol 2005;3:937–947 [CrossRef][PubMed]
    [Google Scholar]
  109. Lind AL, Wisecaver JH, Lameiras C, Wiemann P, Palmer JM et al. Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species. PLoS Biol 2017;15:e2003583 [CrossRef][PubMed]
    [Google Scholar]
  110. Ekblom R, Wolf JB. A field guide to whole-genome sequencing, assembly and annotation. Evol Appl 2014;7:1026–1042 [CrossRef][PubMed]
    [Google Scholar]
  111. Hogg JS, Hu FZ, Janto B, Boissy R, Hayes J et al. Characterization and modeling of the Haemophilus influenzae core and supragenomes based on the complete genomic sequences of Rd and 12 clinical nontypeable strains. Genome Biol 2007;8:R103 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000243
Loading
/content/journal/mgen/10.1099/mgen.0.000243
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Supplementary File 2

Supplementary File 3

Supplementary File 4

Supplementary File 5

Supplementary File 6

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error