Shared genome analyses of notable listeriosis outbreaks, highlighting the critical importance of epidemiological evidence, input datasets and interpretation criteria Open Access

Abstract

The persuasiveness of genomic evidence has pressured scientific agencies to supplement or replace well-established methodologies to inform public health and food safety decision-making. This study of 52 epidemiologically defined Listeria monocytogenes isolates, collected between 1981 and 2011, including nine outbreaks, was undertaken (1) to characterize their phylogenetic relationship at finished genome-level resolution, (2) to elucidate the underlying genetic diversity within an endemic subtype, CC8, and (3) to re-evaluate the genetic relationship and epidemiology of a CC8-delimited outbreak in Canada in 2008. Genomes representing Canadian Listeria outbreaks between 1981 and 2010 were closed and manually annotated. Single nucleotide variants (SNVs) and horizontally acquired traits were used to generate phylogenomic models. Phylogenomic relationships were congruent with classical subtyping and epidemiology, except for CC8 outbreaks, wherein the distribution of SNV and prophages revealed multiple co-evolving lineages. Chronophyletic reconstruction of CC8 evolution indicates that prophage-related genetic changes among CC8 strains manifest as PFGE subtype reversions, obscuring the relationship between CC8 isolates, and complicating the public health interpretation of subtyping data, even at maximum genome resolution. The size of the shared genome interrogated did not change the genetic relationship measured between highly related isolates near the tips of the phylogenetic tree, illustrating the robustness of these approaches for routine public health applications where the focus is recent ancestry. The possibility exists for temporally and epidemiologically distinct events to appear related even at maximum genome resolution, highlighting the continued importance of epidemiological evidence.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000237
2019-01-16
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/5/1/mgen000237.html?itemId=/content/journal/mgen/10.1099/mgen.0.000237&mimeType=html&fmt=ahah

References

  1. Grad YH, Lipsitch M. Epidemiologic data and pathogen genome sequences: a powerful synergy for public health. Genome Biol 2014; 15:538 [View Article][PubMed]
    [Google Scholar]
  2. Stasiewicz MJ, Oliver HF, Wiedmann M, den Bakker HC. Whole-genome sequencing allows for improved identification of persistent Listeria monocytogenes in food-associated environments. Appl Environ Microbiol 2015; 81:6024–6037 [View Article][PubMed]
    [Google Scholar]
  3. Cartwright EJ, Nguyen T, Melluso C, Ayers T, Lane C et al. A multistate investigation of antibiotic-resistant Salmonella enterica serotype I 4,[5],12:i:- infections as part of an international outbreak associated with frozen feeder rodents. Zoonoses Public Health 2016; 63:62–71 [View Article][PubMed]
    [Google Scholar]
  4. Cartwright EJ, Jackson KA, Johnson SD, Graves LM, Silk BJ et al. Listeriosis outbreaks and associated food vehicles, United States, 1998-2008. Emerg Infect Dis 2013; 19:1–9 [View Article][PubMed]
    [Google Scholar]
  5. Currie A, Farber JM, Nadon C, Sharma D, Whitfield Y et al. Multi-province listeriosis outbreak linked to contaminated deli meat consumed primarily in institutional settings, Canada, 2008. Foodborne Pathog Dis 2015; 12:645–652 [View Article][PubMed]
    [Google Scholar]
  6. Orsi RH, den Bakker HC, Wiedmann M. Listeria monocytogenes lineages: genomics, evolution, ecology, and phenotypic characteristics. Int J Med Microbiol 2011; 301:79–96 [View Article][PubMed]
    [Google Scholar]
  7. Gilmour MW, Graham M, van Domselaar G, Tyler S, Kent H et al. High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genomics 2010; 11:120–134 [View Article][PubMed]
    [Google Scholar]
  8. Thomas MK, Murray R, Flockhart L, Pintar K, Fazil A et al. Estimates of foodborne illness-related hospitalizations and deaths in Canada for 30 specified pathogens and unspecified agents. Foodborne Pathog Dis 2015; 12:820–827 [View Article][PubMed]
    [Google Scholar]
  9. Thomas MK, Vriezen R, Farber JM, Currie A, Schlech W et al. Economic cost of a Listeria monocytogenes outbreak in Canada, 2008. Foodborne Pathog Dis 2015; 12:966–971 [View Article][PubMed]
    [Google Scholar]
  10. Ragon M, Wirth T, Hollandt F, Lavenir R, Lecuit M et al. A new perspective on Listeria monocytogenes evolution. PLoS Pathog 2008; 4:e1000146 [View Article][PubMed]
    [Google Scholar]
  11. Sperry KE, Kathariou S, Edwards JS, Wolf LA. Multiple-locus variable-number tandem-repeat analysis as a tool for subtyping Listeria monocytogenes strains. J Clin Microbiol 2008; 46:1435–1450 [View Article][PubMed]
    [Google Scholar]
  12. Lindstedt BA, Tham W, Danielsson-Tham ML, Vardund T, Helmersson S et al. Multiple-locus variable-number tandem-repeats analysis of Listeria monocytogenes using multicolour capillary electrophoresis and comparison with pulsed-field gel electrophoresis typing. J Microbiol Methods 2008; 72:141–148 [View Article][PubMed]
    [Google Scholar]
  13. Chenal-Francisque V, Lopez J, Cantinelli T, Caro V, Tran C et al. Worldwide distribution of major clones of Listeria monocytogenes. Emerg Infect Dis 2011; 17:1110–1112 [View Article][PubMed]
    [Google Scholar]
  14. Haase JK, Didelot X, Lecuit M, Korkeala HL. monocytogenes MLST Study Group, Achtman M. The ubiquitous nature of Listeria monocytogenes clones: a large-scale multilocus sequence typing study. Environ Microbiol 2014; 16:405–416
    [Google Scholar]
  15. Simmons C, Stasiewicz MJ, Wright E, Warchocki S, Roof S et al. Listeria monocytogenes and Listeria spp. contamination patterns in retail delicatessen establishments in three U.S. states. J Food Prot 2014; 77:1929–1939 [View Article][PubMed]
    [Google Scholar]
  16. Lee S, Ward TJ, Graves LM, Tarr CL, Siletzky RM et al. Population structure of Listeria monocytogenes serotype 4b isolates from sporadic human listeriosis cases in the United States from 2003 to 2008. Appl Environ Microbiol 2014; 80:3632–3644 [View Article][PubMed]
    [Google Scholar]
  17. Schlech WF, Lavigne PM, Bortolussi RA, Allen AC, Haldane EV et al. Epidemic listeriosis-evidence for transmission by food. N Engl J Med 1983; 308:203–206 [View Article][PubMed]
    [Google Scholar]
  18. Clark CG, Farber J, Pagotto F, Ciampa N, Doré K et al. Surveillance for Listeria monocytogenes and listeriosis, 1995-2004. Epidemiol Infect 2010; 138:559–572 [View Article][PubMed]
    [Google Scholar]
  19. Knabel SJ, Reimer A, Verghese B, Lok M, Ziegler J et al. Sequence typing confirms that a predominant Listeria monocytogenes clone caused human listeriosis cases and outbreaks in Canada from 1988 to 2010. J Clin Microbiol 2012; 50:1748–1751 [View Article][PubMed]
    [Google Scholar]
  20. Struelens MJ. Consensus guidelines for appropriate use and evaluation of microbial epidemiologic typing systems. Clin Microbiol Infect 1996; 2:2–11 [View Article][PubMed]
    [Google Scholar]
  21. Baldry S. Attack of the clones. Nat Rev Microbiol 2010; 8:390 [View Article][PubMed]
    [Google Scholar]
  22. Petkau A, Mabon P, Sieffert C, Knox NC, Cabral J et al. SNVPhyl: a single nucleotide variant phylogenomics pipeline for microbial genomic epidemiology. Microb Genom 2017; 3:e000116 [View Article][PubMed]
    [Google Scholar]
  23. Bekal S, Berry C, Reimer AR, van Domselaar G, Beaudry G et al. Usefulness of hqSNV analysis for subtyping the highly clonal and the most prevalent Salmonella Heidelberg clone in the context of outbreak investigations. J Clin Microbiol 2016; 54:289–295
    [Google Scholar]
  24. Dallman TJ, Byrne L, Ashton PM, Cowley LA, Perry NT et al. Whole-genome sequencing for national surveillance of Shiga toxin-producing Escherichia coli O157. Clin Infect Dis 2015; 61:305–312 [View Article][PubMed]
    [Google Scholar]
  25. Gilmour MW, Graham M, Reimer A, van Domselaar G. Public health genomics and the new molecular epidemiology of bacterial pathogens. Public Health Genomics 2013; 16:25–30 [View Article][PubMed]
    [Google Scholar]
  26. Hernandez D, François P, Farinelli L, Osterås M, Schrenzel J. De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res 2008; 18:802–809 [View Article][PubMed]
    [Google Scholar]
  27. Staden R. 2016; Staden Package. http://staden.sourceforge.net/
  28. Assefa S, Keane TM, Otto TD, Newbold C, Berriman M. ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics 2009; 25:1968–1969 [View Article][PubMed]
    [Google Scholar]
  29. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5:R12 [View Article][PubMed]
    [Google Scholar]
  30. Olson AB, Kent H, Sibley CD, Grinwis ME, Mabon P et al. Phylogenetic relationship and virulence inference of Streptococcus Anginosus Group: curated annotation and whole-genome comparative analysis support distinct species designation. BMC Genomics 2013; 14:895–917 [View Article][PubMed]
    [Google Scholar]
  31. Petkau A, Mabon P, Sieffert C, Knox NC, Cabral J et al. SNVPhyl: a single nucleotide variant phylogenomics pipeline for microbial genomic epidemiology. Microb Genom 2017; 3:e000116 [View Article][PubMed]
    [Google Scholar]
  32. Ponstingl H, Ning Z. SMALT: a new mapper for DNA sequencing reads. Faculty of 1000 Posters 2010; 1:313
    [Google Scholar]
  33. Garrison E, Marth G. 2012; Haplotype-based variant detection from short-read sequencing. https://arxiv.org/abs/1207.3907
  34. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. 1000 genome project data processing subgroup: The sequence alignment/map format and SAMtools. Bioinformatics 2009; 25:2078–2079
    [Google Scholar]
  35. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res 2011; 39:W347–W352 [View Article][PubMed]
    [Google Scholar]
  36. Dhillon BK, Chiu TA, Laird MR, Langille MG, Brinkman FS. IslandViewer update: improved genomic island discovery and visualization. Nucleic Acids Res 2013; 41:W129–W132 [View Article][PubMed]
    [Google Scholar]
  37. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article][PubMed]
    [Google Scholar]
  38. Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M et al. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics 2012; 13:87–96 [View Article][PubMed]
    [Google Scholar]
  39. van Vliet AH, Kusters JG. Use of alignment-free phylogenetics for rapid genome sequence-based typing of Helicobacter pylori virulence markers and antibiotic susceptibility. J Clin Microbiol 2015; 53:2877–2888 [View Article][PubMed]
    [Google Scholar]
  40. Dixit PD, Pang TY, Studier FW, Maslov S. Recombinant transfer in the basic genome of Escherichia coli. Proc Natl Acad Sci USA 2015; 112:9070–9075 [View Article][PubMed]
    [Google Scholar]
  41. Olson ND, Lund SP, Colman RE, Foster JT, Sahl JW et al. Best practices for evaluating single nucleotide variant calling methods for microbial genomics. Front Genet 2015; 6:235 [View Article][PubMed]
    [Google Scholar]
  42. Harris SR, Török ME, Cartwright EJ, Quail MA, Peacock SJ et al. Read and assembly metrics inconsequential for clinical utility of whole-genome sequencing in mapping outbreaks. Nat Biotechnol 2013; 31:592–594 [View Article][PubMed]
    [Google Scholar]
  43. Moura A, Criscuolo A, Pouseele H, Maury MM, Leclercq A et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat Microbiol 2016; 2:16185 [View Article][PubMed]
    [Google Scholar]
  44. Jackson BR, Tarr C, Strain E, Jackson KA, Conrad A et al. Implementation of nationwide real-time whole-genome sequencing to enhance listeriosis outbreak detection and investigation. Clin Infect Dis 2016; 63:380–386 [View Article][PubMed]
    [Google Scholar]
  45. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010; 5:e11147 [View Article][PubMed]
    [Google Scholar]
  46. Centers for Disease Control and Prevention Multistate Outbreak of Listeriosis Linked to Blue Bell Creameries Products (Final Update). www.cdc.gov/listeria/outbreaks/ice-cream-03-15/
  47. Orsi RH, Borowsky ML, Lauer P, Young SK, Nusbaum C et al. Short-term genome evolution of Listeria monocytogenes in a non-controlled environment. BMC Genomics 2008; 9:539–555 [View Article][PubMed]
    [Google Scholar]
  48. Barrett TJ, Gerner-Smidt P, Swaminathan B. Interpretation of pulsed-field gel electrophoresis patterns in foodborne disease investigations and surveillance. Foodborne Pathog Dis 2006; 3:20–31 [View Article][PubMed]
    [Google Scholar]
  49. Health Canada, Public Health Agency of Canada, Canadian Food Inspection Agency 2011; Weight of evidence: factors to consider for appropriate and timely action in a food-borne illness outbreak investigation. http://www.hc-sc.gc.ca/fn-an/pubs/securit/2011-food-illness-outbreak-eclosion-malad-ailments/index-eng.php
  50. Robinson ER, Walker TM, Pallen MJ. Genomics and outbreak investigation: from sequence to consequence. Genome Med 2013; 5:36–44 [View Article][PubMed]
    [Google Scholar]
  51. Weller D, Wiedmann M, Strawn LK. Spatial and temporal factors associated with an increased prevalence of Listeria monocytogenes in spinach fields in New York State. Appl Environ Microbiol 2015; 81:6059–6069 [View Article][PubMed]
    [Google Scholar]
  52. Weller D, Wiedmann M, Strawn LK. Irrigation is significantly associated with an increased prevalence of Listeria monocytogenes in produce production environments in New York State. J Food Prot 2015; 78:1132–1141 [View Article][PubMed]
    [Google Scholar]
  53. McCollum JT, Cronquist AB, Silk BJ, Jackson KA, O'Connor KA et al. Multistate outbreak of listeriosis associated with cantaloupe. N Engl J Med 2013; 369:944–953 [View Article][PubMed]
    [Google Scholar]
  54. Laksanalamai P, Joseph LA, Silk BJ, Burall LS, Tarr CL et al. Genomic characterization of Listeria monocytogenes strains involved in a multistate listeriosis outbreak associated with cantaloupe in US. PLoS One 2012; 7:e42448 [View Article][PubMed]
    [Google Scholar]
  55. Kovacevic J, Ziegler J, Wałecka-Zacharska E, Reimer A, Kitts DD et al. Tolerance of Listeria monocytogenes to quaternary ammonium sanitizers is mediated by a novel efflux pump encoded by emrE. Appl Environ Microbiol 2016; 82:939–953 [View Article][PubMed]
    [Google Scholar]
  56. Varma JK, Samuel MC, Marcus R, Hoekstra RM, Medus C et al. Listeria monocytogenes infection from foods prepared in a commercial establishment: a case-control study of potential sources of sporadic illness in the United States. Clin Infect Dis 2007; 44:521–528 [View Article][PubMed]
    [Google Scholar]
  57. den Bakker HC, Bowen BM, Rodriguez-Rivera LD, Wiedmann M. FSL J1-208, a virulent uncommon phylogenetic lineage IV Listeria monocytogenes strain with a small chromosome size and a putative virulence plasmid carrying internalin-like genes. Appl Environ Microbiol 2012; 78:1876–1889 [View Article][PubMed]
    [Google Scholar]
  58. Reimer AR, Van Domselaar G, Stroika S, Walker M, Kent H et al. Comparative genomics of Vibrio cholerae from Haiti, Asia, and Africa. Emerg Infect Dis 2011; 17:2113–2121 [View Article][PubMed]
    [Google Scholar]
  59. Global Microbial Identifier 2018 www.globalmicrobialidentifier.org/
  60. Carleton H, Gerner-Smidt P. Whole-genome sequencing is taking over foodborne disease surveillance. Microbe 2016; 11:311–317
    [Google Scholar]
  61. Dekker JP, Frank KM. Next-generation epidemiology: using real-time core genome multilocus sequence typing to support infection control policy. J Clin Microbiol 2016; 54:2850–2853 [View Article][PubMed]
    [Google Scholar]
  62. Lynch T, Petkau A, Knox N, Graham M, van Domselaar G. A primer on infectious disease bacterial genomics. Clin Microbiol Rev 2016; 29:881–913 [View Article][PubMed]
    [Google Scholar]
  63. Public Health Agency of Canada 2018 http://www.irida.ca/
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000237
Loading
/content/journal/mgen/10.1099/mgen.0.000237
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed