1887

Abstract

Carbapenem resistance is a rapidly growing threat to our ability to treat refractory bacterial infections. To understand how carbapenem resistance is mobilized and spread between pathogens, it is important to study the genetic context of the underlying resistance mechanisms. In this study, the resistomes of six clinical carbapenem-resistant isolates of five different species – Acinetobacter baumannii, Escherichia coli, two Klebsiella pneumoniae, Proteus mirabilis and Pseudomonas aeruginosa – were characterized using whole genome sequencing. All Enterobacteriaceae isolates and the A. baumannii isolate had acquired a large number of antimicrobial resistance genes (7–18 different genes per isolate), including the following encoding carbapenemases: bla KPC-2, bla OXA-48, bla OXA-72, bla NDM-1, bla NDM-7 and bla VIM-1. In addition, a novel version of bla SHV was discovered. Four new resistance plasmids were identified and their fully assembled sequences were verified using optical DNA mapping. Most of the resistance genes were co-localized on these and other plasmids, suggesting a risk for co-selection. In contrast, five out of six carbapenemase genes were present on plasmids with no or few other resistance genes. The expected level of resistance – based on acquired resistance determinants – was concordant with measured levels in most cases. There were, however, several important discrepancies for four of the six isolates concerning multiple classes of antibiotics. In conclusion, our results further elucidate the diversity of carbapenemases, their mechanisms of horizontal transfer and possible patterns of co-selection. The study also emphasizes the difficulty of using whole genome sequencing for antimicrobial susceptibility testing of pathogens with complex genotypes.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000233
2018-11-21
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/11/mgen000233.html?itemId=/content/journal/mgen/10.1099/mgen.0.000233&mimeType=html&fmt=ahah

References

  1. Potter RF, D'Souza AW, Dantas G. The rapid spread of carbapenem-resistant Enterobacteriaceae. Drug Resist Updat 2016;29:30–46 [CrossRef][PubMed]
    [Google Scholar]
  2. World Health Organization Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. 2017
  3. U.S Department of Health and Human Services, Center for Disease Control and Prevention Antibiotic resistance threats in the United States. 2013
  4. European Centre for Disease Prevention and Control Antimicrobial resistance surveillance in Europe 2015. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) Stockholm: ECDC; 2017
    [Google Scholar]
  5. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother 2011;55:4943–4960 [CrossRef][PubMed]
    [Google Scholar]
  6. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010;54:969–976 [CrossRef][PubMed]
    [Google Scholar]
  7. Cerqueira GC, Earl AM, Ernst CM, Grad YH, Dekker JP et al. Multi-institute analysis of carbapenem resistance reveals remarkable diversity, unexplained mechanisms, and limited clonal outbreaks. Proc Natl Acad Sci USA 2017;114:1135–1140 [CrossRef][PubMed]
    [Google Scholar]
  8. Berglund F, Marathe NP, Österlund T, Bengtsson-Palme J, Kotsakis S et al. Identification of 76 novel B1 metallo-β-lactamases through large-scale screening of genomic and metagenomic data. Microbiome 2017;5:134 [CrossRef]
    [Google Scholar]
  9. Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev 2015;28:565–591 [CrossRef][PubMed]
    [Google Scholar]
  10. Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol 2013;303:298–304 [CrossRef][PubMed]
    [Google Scholar]
  11. Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST subcommittee. Clin Microbiol Infect 2017;23:2–22 [CrossRef][PubMed]
    [Google Scholar]
  12. Köser CU, Ellington MJ, Peacock SJ. Whole-genome sequencing to control antimicrobial resistance. Trends Genet 2014;30:401–407 [CrossRef][PubMed]
    [Google Scholar]
  13. Müller V, Westerlund F. Optical DNA mapping in nanofluidic devices: principles and applications. Lab Chip 2017;17:579–590 [CrossRef]
    [Google Scholar]
  14. Nyberg LK, Quaderi S, Emilsson G, Karami N, Lagerstedt E et al. Rapid identification of intact bacterial resistance plasmids via optical mapping of single DNA molecules. Sci Rep 2016;6:30410 [CrossRef]
    [Google Scholar]
  15. Müller V, Karami N, Nyberg LK, Pichler C, Torche Pedreschi PC et al. Rapid tracing of resistance plasmids in a nosocomial outbreak using optical DNA mapping. ACS Infect Dis 2016;2:322–328 [CrossRef][PubMed]
    [Google Scholar]
  16. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  17. Nilsson AN, Emilsson G, Nyberg LK, Noble C, Stadler LS et al. Competitive binding-based optical DNA mapping for fast identification of bacteria–multi-ligand transfer matrix theory and experimental applications on Escherichia coli. Nucleic Acids Res 2014;42:e118 [CrossRef][PubMed]
    [Google Scholar]
  18. Persson F, Tegenfeldt JO. DNA in nanochannels—directly visualizing genomic information. Chem Soc Rev 2010;39:985–999 [CrossRef]
    [Google Scholar]
  19. Dvirnas A, Pichler C, Stewart CL, Quaderi S, Nyberg LK et al. Facilitated sequence assembly using densely labeled optical DNA barcodes: A combinatorial auction approach. PLoS One 2018;13:e0193900 [CrossRef]
    [Google Scholar]
  20. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014;58:3895–3903 [CrossRef][PubMed]
    [Google Scholar]
  21. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012;67:2640–2644 [CrossRef]
    [Google Scholar]
  22. Guglielmini J, de La Cruz F, Rocha EP. Evolution of conjugation and type IV secretion systems. Mol Biol Evol 2013;30:315–331 [CrossRef][PubMed]
    [Google Scholar]
  23. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009;10:421 [CrossRef][PubMed]
    [Google Scholar]
  24. Pereira MB, Wallroth M, Kristiansson E, Axelson-Fisk M. HattCI: fast and accurate attC site identification using hidden Markov models. J Comput Biol 2016;23:891–902 [CrossRef][PubMed]
    [Google Scholar]
  25. Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 2013;29:2933–2935 [CrossRef]
    [Google Scholar]
  26. Will S, Joshi T, Hofacker IL, Stadler PF, Backofen R. LocARNA-P: accurate boundary prediction and improved detection of structural RNAs. RNA 2012;18:900–914 [CrossRef][PubMed]
    [Google Scholar]
  27. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006;34:D32–D36 [CrossRef][PubMed]
    [Google Scholar]
  28. Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet 2000;16:276–277 [CrossRef][PubMed]
    [Google Scholar]
  29. Toleman MA, Bennett PM, Walsh TR. ISCR elements: novel gene-capturing systems of the 21st century?. Microbiol Mol Biol Rev 2006;70:296–316 [CrossRef][PubMed]
    [Google Scholar]
  30. EUCAST 2016; Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0. The European Committee on Antimicrobial Susceptibility Testingwww.eucast.org/clinical_breakpoints/
    [Google Scholar]
  31. Zankari E, Hasman H, Kaas RS, Seyfarth AM, Agersø Y et al. Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. J Antimicrob Chemother 2013;68:771–777 [CrossRef][PubMed]
    [Google Scholar]
  32. Stoesser N, Batty EM, Eyre DW, Morgan M, Wyllie DH et al. Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data. J Antimicrob Chemother 2013;68:2234–2244 [CrossRef]
    [Google Scholar]
  33. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S et al. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 2015;6:10063 [CrossRef]
    [Google Scholar]
  34. Zhao S, Tyson GH, Chen Y, Li C, Mukherjee S et al. Whole-genome sequencing analysis accurately predicts antimicrobial resistance phenotypes in Campylobacter spp. Appl Environ Microbiol 2016;82:459–466 [CrossRef][PubMed]
    [Google Scholar]
  35. Mouneimné H, Robert J, Jarlier V, Cambau E. Type II topoisomerase mutations in ciprofloxacin-resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1999;43:62–66 [CrossRef][PubMed]
    [Google Scholar]
  36. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009;22:582–610 [CrossRef][PubMed]
    [Google Scholar]
  37. Vogne C, Aires JR, Bailly C, Hocquet D, Plésiat P. Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 2004;48:1676–1680 [CrossRef][PubMed]
    [Google Scholar]
  38. El Amin N, Giske CG, Jalal S, Keijser B, Kronvall G et al. Carbapenem resistance mechanisms in Pseudomonas aeruginosa: alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates. APMIS 2005;113:187–196 [CrossRef][PubMed]
    [Google Scholar]
  39. Pirnay JP, de Vos D, Mossialos D, Vanderkelen A, Cornelis P et al. Analysis of the Pseudomonas aeruginosa oprD gene from clinical and environmental isolates. Environ Microbiol 2002;4:872–882 [CrossRef][PubMed]
    [Google Scholar]
  40. Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D et al. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 2006;12:83–88 [CrossRef]
    [Google Scholar]
  41. Sandvang D. Novel streptomycin and spectinomycin resistance gene as a gene cassette within a class 1 integron isolated from Escherichia coli. Antimicrob Agents Chemother 1999;43:3036–3038 [CrossRef][PubMed]
    [Google Scholar]
  42. Scholz P, Haring V, Wittmann-Liebold B, Ashman K, Bagdasarian M et al. Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010. Gene 1989;75:271–288 [CrossRef]
    [Google Scholar]
  43. Karim A, Poirel L, Nagarajan S, Nordmann P. Plasmid-mediated extended-spectrum β-lactamase (CTX-M-3 like) from India and gene association with insertion sequence ISEcp1. Fems Microbiol Lett 2001;201:237–241
    [Google Scholar]
  44. Göttig S, Hamprecht AG, Christ S, Kempf VA, Wichelhaus TA. Detection of NDM-7 in Germany, a new variant of the New Delhi metallo-β-lactamase with increased carbapenemase activity. J Antimicrob Chemother 2013;68:1737–1740 [CrossRef][PubMed]
    [Google Scholar]
  45. Ouellette M, Bissonnette L, Roy PH. Precise insertion of antibiotic resistance determinants into Tn21-like transposons: nucleotide sequence of the OXA-1 beta-lactamase gene. Proc Natl Acad Sci USA 1987;84:7378–7382 [CrossRef][PubMed]
    [Google Scholar]
  46. Lawley TD, Burland V, Taylor DE. Analysis of the complete nucleotide sequence of the tetracycline-resistance transposon Tn10. Plasmid 2000;43:235–239 [CrossRef][PubMed]
    [Google Scholar]
  47. Hirata T, Saito A, Nishino K, Tamura N, Yamaguchi A. Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936). Antimicrob Agents Chemother 2004;48:2179–2184 [CrossRef][PubMed]
    [Google Scholar]
  48. Noguchi N, Emura A, Matsuyama H, O'Hara K, Sasatsu M et al. Nucleotide sequence and characterization of erythromycin resistance determinant that encodes macrolide 2'-phosphotransferase I in Escherichia coli. Antimicrob Agents Chemother 1995;39:2359–2363 [CrossRef]
    [Google Scholar]
  49. Billard-Pomares T, Tenaillon O, Le Nagard H, Rouy Z, Cruveiller S et al. Complete nucleotide sequence of plasmid pTN48, encoding the CTX-M-14 extended-spectrum β-lactamase from an Escherichia coli O102-ST405 strain. Antimicrob Agents Chemother 2011;55:1270–1273 [CrossRef][PubMed]
    [Google Scholar]
  50. White PA, McIver CJ, Deng Y, Rawlinson WD. Characterisation of two new gene cassettes, aadA5 and dfrA17. FEMS Microbiol Lett 2000;182:265–269 [CrossRef][PubMed]
    [Google Scholar]
  51. Rådström P, Swedberg G. RSF1010 and a conjugative plasmid contain sulII, one of two known genes for plasmid-borne sulfonamide resistance dihydropteroate synthase. Antimicrob Agents Chemother 1988;32:1684–1692 [CrossRef][PubMed]
    [Google Scholar]
  52. Hopkins KL, Davies RH, Threlfall EJ. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments. Int J Antimicrob Agents 2005;25:358–373 [CrossRef][PubMed]
    [Google Scholar]
  53. Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 2004;28:519–542 [CrossRef]
    [Google Scholar]
  54. Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 2004;48:15–22 [CrossRef][PubMed]
    [Google Scholar]
  55. Cuzon G, Naas T, Bogaerts P, Glupczynski Y, Huang TD et al. Plasmid-encoded carbapenem-hydrolyzing beta-lactamase OXA-48 in an imipenem-susceptible Klebsiella pneumoniae strain from Belgium. Antimicrob Agents Chemother 2008;52:3463–3464 [CrossRef][PubMed]
    [Google Scholar]
  56. Nüesch-Inderbinen MT, Kayser FH, Hächler H. Survey and molecular genetics of SHV beta-lactamases in Enterobacteriaceae in Switzerland: two novel enzymes, SHV-11 and SHV-12. Antimicrob Agents Chemother 1997;41:943–949 [CrossRef]
    [Google Scholar]
  57. Sutcliffe JG. Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. Proc Natl Acad Sci USA 1978;75:3737–3741 [CrossRef][PubMed]
    [Google Scholar]
  58. Young H-K, Amyes SGB. Characterisation of a new transposon-mediated trimethoprim-resistant dihydrofolate reductase. Biochem Pharmacol 1985;34:4334–4337 [CrossRef]
    [Google Scholar]
  59. Brisse S, Milatovic D, Fluit AC, Verhoef J, Martin N et al. Comparative in vitro activities of ciprofloxacin, clinafloxacin, gatifloxacin, levofloxacin, moxifloxacin, and trovafloxacin against Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, and Enterobacter aerogenes clinical isolates with alterations in GyrA and ParC proteins. Antimicrob Agents Chemother 1999;43:2051–2055 [CrossRef][PubMed]
    [Google Scholar]
  60. Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001;65:232–260 [CrossRef][PubMed]
    [Google Scholar]
  61. Ruzin A, Visalli MA, Keeney D, Bradford PA. Influence of transcriptional activator RamA on expression of multidrug efflux pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother 2005;49:1017–1022 [CrossRef][PubMed]
    [Google Scholar]
  62. Bratu S, Landman D, George A, Salvani J, Quale J. Correlation of the expression of acrB and the regulatory genes marA, soxS and ramA with antimicrobial resistance in clinical isolates of Klebsiella pneumoniae endemic to New York City. J Antimicrob Chemother 2009;64:278–283 [CrossRef]
    [Google Scholar]
  63. Galimand M, Courvalin P, Lambert T. Plasmid-mediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. Antimicrob Agents Chemother 2003;47:2565–2571 [CrossRef][PubMed]
    [Google Scholar]
  64. Chen YT, Lauderdale TL, Liao TL, Shiau YR, Shu HY et al. Sequencing and comparative genomic analysis of pK29, a 269-kilobase conjugative plasmid encoding CMY-8 and CTX-M-3 beta-lactamases in Klebsiella pneumoniae. Antimicrob Agents Chemother 2007;51:3004–3007 [CrossRef][PubMed]
    [Google Scholar]
  65. Martin P, Jullien E, Courvalin P. Nucleotide sequence of Acinetobacter baumannii aphA-6 gene: evolutionary and functional implications of sequence homologies with nucleotide-binding proteins, kinases and other aminoglycoside-modifying enzymes. Mol Microbiol 1988;2:615–625 [CrossRef][PubMed]
    [Google Scholar]
  66. D'Andrea MM, Nucleo E, Luzzaro F, Giani T, Migliavacca R et al. CMY-16, a novel acquired AmpC-type beta-lactamase of the CMY/LAT lineage in multifocal monophyletic isolates of Proteus mirabilis from northern Italy. Antimicrob Agents Chemother 2006;50:618–624 [CrossRef][PubMed]
    [Google Scholar]
  67. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K et al. Characterization of a new metallo-beta-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 2009;53:5046–5054 [CrossRef][PubMed]
    [Google Scholar]
  68. Huovinen P, Huovinen S, Jacoby GA. Sequence of PSE-2 beta-lactamase. Antimicrob Agents Chemother 1988;32:134–136 [CrossRef]
    [Google Scholar]
  69. Roberts MC. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 2005;245:195–203 [CrossRef][PubMed]
    [Google Scholar]
  70. Tribuddharat C, Fennewald M. Integron-mediated rifampin resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1999;43:960–962 [CrossRef][PubMed]
    [Google Scholar]
  71. Shen P, Wei Z, Jiang Y, Du X, Ji S et al. Novel genetic environment of the carbapenem-hydrolyzing beta-lactamase KPC-2 among Enterobacteriaceae in China. Antimicrob Agents Chemother 2009;53:4333–4338 [CrossRef][PubMed]
    [Google Scholar]
  72. Sundström L, Rådström P, Swedberg G, Sköld O. Site-specific recombination promotes linkage between trimethoprim- and sulfonamide resistance genes. Sequence characterization of dhfrV and sulI and a recombination active locus of Tn21. Mol Gen Genet 1988;213:191–201 [CrossRef][PubMed]
    [Google Scholar]
  73. Heikkilä E, Skurnik M, Sundström L, Huovinen P. A novel dihydrofolate reductase cassette inserted in an integron borne on a Tn21-like element. Antimicrob Agents Chemother 1993;37:1297–1304 [CrossRef][PubMed]
    [Google Scholar]
  74. Tennstedt T, Szczepanowski R, Braun S, Pühler A, Schlüter A. Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. FEMS Microbiol Ecol 2003;45:239–252 [CrossRef][PubMed]
    [Google Scholar]
  75. Briggs CE, Fratamico PM. Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104. Antimicrob Agents Chemother 1999;43:846–849 [CrossRef][PubMed]
    [Google Scholar]
  76. Blickwede M, Schwarz S. Molecular analysis of florfenicol-resistant Escherichia coli isolates from pigs. J Antimicrob Chemother 2004;53:58–64 [CrossRef]
    [Google Scholar]
  77. Weigel LM, Anderson GJ, Tenover FC. DNA gyrase and topoisomerase IV mutations associated with fluoroquinolone resistance in Proteus mirabilis. Antimicrob Agents Chemother 2002;46:2582–2587 [CrossRef][PubMed]
    [Google Scholar]
  78. Zienkiewicz M, Kern-Zdanowicz I, Gołebiewski M, Zyliñska J, Mieczkowski P et al. Mosaic structure of p1658/97, a 125-kilobase plasmid harboring an active amplicon with the extended-spectrum beta-lactamase gene blaSHV-5. Antimicrob Agents Chemother 2007;51:1164–1171 [CrossRef][PubMed]
    [Google Scholar]
  79. Hannecart-Pokorni E, Depuydt F, de Wit L, van Bossuyt E, Content J et al. Characterization of the 6'-N-aminoglycoside acetyltransferase gene aac(6')-Im [corrected] associated with a sulI-type integron. Antimicrob Agents Chemother 1997;41:314–318 [CrossRef][PubMed]
    [Google Scholar]
  80. Wang H, Guo P, Sun H, Wang H, Yang Q et al. Molecular epidemiology of clinical isolates of carbapenem-resistant Acinetobacter spp. from Chinese hospitals. Antimicrob Agents Chemother 2007;51:4022–4028 [CrossRef][PubMed]
    [Google Scholar]
  81. Vila J, Ruiz J, Goñi P, Jimenez de Anta T. Quinolone-resistance mutations in the topoisomerase IV parC gene of Acinetobacter baumannii. J Antimicrob Chemother 1997;39:757–762 [CrossRef][PubMed]
    [Google Scholar]
  82. Lee KY, Hopkins JD, Syvanen M. Direct involvement of IS26 in an antibiotic resistance operon. J Bacteriol 1990;172:3229–3236 [CrossRef]
    [Google Scholar]
  83. Scoulica EV, Neonakis IK, Gikas AI, Tselentis YJ. Spread of blaVIM-1-producing E. coli in a university hospital in Greece. Genetic analysis of the integron carrying the blaVIM-1 metallo-beta-lactamase gene. Diagn Microbiol Infect Dis 2004;48:167–172 [CrossRef][PubMed]
    [Google Scholar]
  84. Yigit H, Queenan AM, Rasheed JK, Biddle JW, Domenech-Sanchez A et al. Carbapenem-resistant strain of Klebsiella oxytoca harboring carbapenem-hydrolyzing beta-lactamase KPC-2. Antimicrob Agents Chemother 2003;47:3881–3889 [CrossRef][PubMed]
    [Google Scholar]
  85. Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G et al. Cloning and characterization of blaVIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 1999;43:1584–1590 [CrossRef][PubMed]
    [Google Scholar]
  86. Moura A, Soares M, Pereira C, Leitão N, Henriques I et al. INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics 2009;25:1096–1098 [CrossRef][PubMed]
    [Google Scholar]
  87. Papagiannitsis CC, Miriagou V, Kotsakis SD, Tzelepi E, Vatopoulos AC et al. Characterization of a transmissible plasmid encoding VEB-1 and VIM-1 in Proteus mirabilis. Antimicrob Agents Chemother 2012;56:4024–4025 [CrossRef][PubMed]
    [Google Scholar]
  88. Deguchi T, Fukuoka A, Yasuda M, Nakano M, Ozeki S et al. Alterations in the GyrA subunit of DNA gyrase and the ParC subunit of topoisomerase IV in quinolone-resistant clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother 1997;41:699–701 [CrossRef]
    [Google Scholar]
  89. Sandegren L, Andersson DI. Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat Rev Microbiol 2009;7:578–588 [CrossRef]
    [Google Scholar]
  90. Huang TW, Chen TL, Chen YT, Lauderdale TL, Liao TL et al. Copy number change of the NDM-1 sequence in a multidrug-resistant Klebsiella pneumoniae clinical isolate. PLoS One 2013;8:e62774 [CrossRef][PubMed]
    [Google Scholar]
  91. Walther-Rasmussen J, Høiby N. OXA-type carbapenemases. J Antimicrob Chemother 2006;57:373–383 [CrossRef]
    [Google Scholar]
  92. Girlich D, Naas T, Nordmann P. Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2004;48:2043–2048 [CrossRef][PubMed]
    [Google Scholar]
  93. Figueiredo S, Poirel L, Croize J, Recule C, Nordmann P. In vivo selection of reduced susceptibility to carbapenems in Acinetobacter baumannii related to ISAba1-mediated overexpression of the natural blaOXA-66 oxacillinase gene. Antimicrob Agents Chemother 2009;53:2657–2659 [CrossRef][PubMed]
    [Google Scholar]
  94. Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EP, de La Cruz F. Mobility of plasmids. Microbiol Mol Biol Rev 2010;74:434–452 [CrossRef][PubMed]
    [Google Scholar]
  95. Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother 2012;56:559–562 [CrossRef][PubMed]
    [Google Scholar]
  96. Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV. Co-selection of antibiotic and metal resistance. Trends Microbiol 2006;14:176–182 [CrossRef]
    [Google Scholar]
  97. Poirel L, Dortet L, Bernabeu S, Nordmann P. Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob Agents Chemother 2011;55:5403–5407
    [Google Scholar]
  98. Boulund F, Karlsson R, Gonzales-Siles L, Johnning A, Karami N et al. Typing and characterization of bacteria using bottom-up tandem mass spectrometry proteomics. Mol Cell Proteomics 2017;16:1052–1063 [CrossRef][PubMed]
    [Google Scholar]
  99. Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance?. Nat Rev Microbiol 2010;8:260–271 [CrossRef]
    [Google Scholar]
  100. EUCAST 2017; European Committee on Antimicrobial Susceptibility Testing. Data from The EUCAST MIC Distribution Websitewww.eucast.org [accessed 28 July 2017]
    [Google Scholar]
  101. Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H et al. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2000;44:3322–3327 [CrossRef][PubMed]
    [Google Scholar]
  102. Pai H, Kim J, Kim J, Lee JH, Choe KW et al. Carbapenem resistance mechanisms in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2001;45:480–484 [CrossRef][PubMed]
    [Google Scholar]
  103. Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 2011;11:355–362 [CrossRef]
    [Google Scholar]
  104. Keeney D, Ruzin A, McAleese F, Murphy E, Bradford PA. MarA-mediated overexpression of the AcrAB efflux pump results in decreased susceptibility to tigecycline in Escherichia coli. J Antimicrob Chemother 2008;61:46–53 [CrossRef][PubMed]
    [Google Scholar]
  105. Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare?. Clin Infect Dis 2002;34:634–640 [CrossRef][PubMed]
    [Google Scholar]
  106. Reuter S, Ellington MJ, Cartwright EJ, Köser CU, Török ME et al. Rapid bacterial whole-genome sequencing to enhance diagnostic and public health microbiology. JAMA Intern Med 2013;173:1397–1404 [CrossRef][PubMed]
    [Google Scholar]
  107. Dantas G, Sommer MO. Context matters - the complex interplay between resistome genotypes and resistance phenotypes. Curr Opin Microbiol 2012;15:577–582 [CrossRef][PubMed]
    [Google Scholar]
  108. Martínez JL, Coque TM, Baquero F. What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol 2015;13:116–123 [CrossRef][PubMed]
    [Google Scholar]
  109. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016;16:161–168 [CrossRef][PubMed]
    [Google Scholar]
  110. Hu Y, Liu F, Lin IY, Gao GF, Zhu B. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 2016;16:146–147 [CrossRef][PubMed]
    [Google Scholar]
  111. Leclercq R, Cantón R, Brown DF, Giske CG, Heisig P et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin Microbiol Infect 2011;19:141–160 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000233
Loading
/content/journal/mgen/10.1099/mgen.0.000233
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error