1887

Abstract

Antimicrobial resistance (AMR) is a global public-health emergency, which threatens the advances made by modern medical care over the past century. The World Health Organization has recently published a global priority list of antibiotic-resistant bacteria, which includes extended-spectrum β-lactamase-producing Enterobacteriaceae and carbapenemase-producing Enterobacteriaceae. In this review, we highlight the mechanisms of resistance and the genomic epidemiology of these organisms, and the impact of AMR.

Erratum
This article contains a correction applying to the following content:
Corrigendum: Extended-spectrum β-lactamase-producing and carbapenemase-producing Enterobacteriaceae
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000197
2018-07-23
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/7/mgen000197.html?itemId=/content/journal/mgen/10.1099/mgen.0.000197&mimeType=html&fmt=ahah

References

  1. Ray S, Anand D, Purwar S, Samanta A, Upadhye KV et al. Association of high mortality with extended-spectrum β-lactamase (ESBL) positive cultures in community acquired infections. J Crit Care 2018;44:255–260 [CrossRef][PubMed]
    [Google Scholar]
  2. Schwaber MJ, Carmeli Y. Mortality and delay in effective therapy associated with extended-spectrum β-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother 2007;60:913–920 [CrossRef][PubMed]
    [Google Scholar]
  3. Giske CG, Monnet DL, Cars O, Carmeli Y. ReAct-Action on Antibiotic Resistance Clinical and economic impact of common multidrug-resistant Gram-negative bacilli. Antimicrob Agents Chemother 2008;52:813–821 [CrossRef][PubMed]
    [Google Scholar]
  4. Tumbarello M, Spanu T, di Bidino R, Marchetti M, Ruggeri M et al. Costs of bloodstream infections caused by Escherichia coli and influence of extended-spectrum-β-lactamase production and inadequate initial antibiotic therapy. Antimicrob Agents Chemother 2010;54:4085–4091 [CrossRef][PubMed]
    [Google Scholar]
  5. Melzer M, Petersen I. Mortality following bacteraemic infection caused by extended spectrum β-lactamase (ESBL) producing E. coli compared to non-ESBL producing E. coli. J Infect 2007;55:254–259 [CrossRef]
    [Google Scholar]
  6. Fraenkel-Wandel Y, Raveh-Brawer D, Wiener-Well Y, Yinnon AM, Assous MV. Mortality due to bla KPC Klebsiella pneumoniae bacteraemia. J Antimicrob Chemother 2016;71:1083–1087
    [Google Scholar]
  7. Mcconville TH, Sullivan SB, Gomez-Simmonds A, Whittier S, Uhlemann AC. Carbapenem-resistant Enterobacteriaceae colonization (CRE) and subsequent risk of infection and 90-day mortality in critically ill patients, an observational study. PLoS One 2017;12:e0186195 [CrossRef][PubMed]
    [Google Scholar]
  8. Xu L, Sun X, Ma X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob 2017;16:18 [CrossRef]
    [Google Scholar]
  9. O'Neill J. The Review on Antimicrobial Resistance London: Wellcome Trust and HM Government; 2016
    [Google Scholar]
  10. World Health Organization Antimicrobial Resistance: Global Report on Surveillance Geneva: World Health Organization; 2014
    [Google Scholar]
  11. European Centre for Disease Prevention and Control Antimicrobial Resistance Surveillance in Europe 2015. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) Stockholm: European Centre for Disease Prevention and Control; 2017
    [Google Scholar]
  12. World Health Organization Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics Geneva: World Health Organization; 2017
    [Google Scholar]
  13. Drees M, Pineles L, Harris AD, Morgan DJ. Variation in definitions and isolation procedures for multidrug-resistant Gram-negative bacteria: a survey of the society for healthcare epidemiology of america research network. Infect Control Hosp Epidemiol 2014;35:362–366 [CrossRef][PubMed]
    [Google Scholar]
  14. Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev 2005;18:657–686 [CrossRef][PubMed]
    [Google Scholar]
  15. Ambler RP. The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci 1980;289:321–331
    [Google Scholar]
  16. Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother 2010;54:969–976 [CrossRef][PubMed]
    [Google Scholar]
  17. Decousser JW, Poirel L, Nordmann P. Characterization of a chromosomally encoded extended-spectrum class A β-lactamase from Kluyvera cryocrescens. Antimicrob Agents Chemother 2001;45:3595–3598 [CrossRef][PubMed]
    [Google Scholar]
  18. Humeniuk C, Arlet G, Gautier V, Grimont P, Labia R et al. β-lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob Agents Chemother 2002;46:3045–3049 [CrossRef][PubMed]
    [Google Scholar]
  19. Poirel L, Kämpfer P, Nordmann P. Chromosome-encoded Ambler class A β-lactamase of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended-spectrum β-lactamases. Antimicrob Agents Chemother 2002;46:4038–4040 [CrossRef][PubMed]
    [Google Scholar]
  20. Naseer U, Sundsfjord A. The CTX-M conundrum: dissemination of plasmids and Escherichia coli clones. Microb Drug Resist 2011;17:83–97 [CrossRef][PubMed]
    [Google Scholar]
  21. Bauernfeind A, Schweighart S, Grimm H. A new plasmidic cefotaximase in a clinical isolate of Escherichia coli. Infection 1990;18:294–298 [CrossRef]
    [Google Scholar]
  22. Bauernfeind A, Casellas JM, Goldberg M, Holley M, Jungwirth R et al. A new plasmidic cefotaximase from patients infected with Salmonella typhimurium. Infection 1992;20:158–163 [CrossRef][PubMed]
    [Google Scholar]
  23. Ishii Y, Ohno A, Taguchi H, Imajo S, Ishiguro M et al. Cloning and sequence of the gene encoding a cefotaxime-hydrolyzing class A β-lactamase isolated from Escherichia coli. Antimicrob Agents Chemother 1995;39:2269–2275 [CrossRef]
    [Google Scholar]
  24. Cantón R, González-Alba JM, Galán JC. CTX-M enzymes: origin and diffusion. Front Microbiol 2012;3:110 [CrossRef][PubMed]
    [Google Scholar]
  25. Robin F, Beyrouthy R, Bonacorsi S, Aissa N, Bret L et al. Inventory of extended-spectrum-β-lactamase-producing Enterobacteriaceae in France as assessed by a multicenter study. Antimicrob Agents Chemother 2017;61:e01911-16 [CrossRef][PubMed]
    [Google Scholar]
  26. Rios E, Lopez MC, Rodriguez-Avial I, Culebras E, Picazo JJ. Detection of Escherichia coli ST131 clonal complex (ST705) and Klebsiella pneumoniae ST15 among faecal carriage of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae. J Med Microbiol 2017;66:169–174
    [Google Scholar]
  27. Pietsch M, Eller C, Wendt C, Holfelder M, Falgenhauer L et al. Molecular characterisation of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates from hospital and ambulatory patients in Germany. Vet Microbiol 2017;200:130–137 [CrossRef][PubMed]
    [Google Scholar]
  28. Burke L, Humphreys H, Fitzgerald-Hughes D. The molecular epidemiology of resistance in cefotaximase-producing Escherichia coli clinical isolates from Dublin, Ireland. Microb Drug Resist 2016;22:552–558 [CrossRef][PubMed]
    [Google Scholar]
  29. Willemsen I, Oome S, Verhulst C, Pettersson A, Verduin K et al. Trends in extended spectrum β-lactamase (ESBL) producing Enterobacteriaceae and ESBL genes in a Dutch teaching hospital, measured in 5 yearly point prevalence surveys (2010–2014). PLoS One 2015;10:e0141765 [CrossRef]
    [Google Scholar]
  30. Public Health England English Surveillance Programme for Antimicrobial Utilisation and Resistance (ESPAUR) Report 2017 London: Public Health England; 2017
    [Google Scholar]
  31. Runcharoen C, Raven KE, Reuter S, Kallonen T, Paksanont S et al. Whole genome sequencing of ESBL-producing Escherichia coli isolated from patients, farm waste and canals in Thailand. Genome Med 2017;9:81 [CrossRef][PubMed]
    [Google Scholar]
  32. Lee MY, Ko KS, Kang CI, Chung DR, Peck KR et al. High prevalence of CTX-M-15-producing Klebsiella pneumoniae isolates in Asian countries: diverse clones and clonal dissemination. Int J Antimicrob Agents 2011;38:160–163 [CrossRef][PubMed]
    [Google Scholar]
  33. Musicha P, Feasey NA, Cain AK, Kallonen T, Chaguza C et al. Genomic landscape of extended-spectrum β-lactamase resistance in Escherichia coli from an urban African setting. J Antimicrob Chemother 2017;72:1602–1609 [CrossRef][PubMed]
    [Google Scholar]
  34. Dziri R, Klibi N, Alonso CA, Said LB, Bellaaj R et al. Characterization of extended-spectrum β-lactamase (ESBL)-producing Klebsiella, Enterobacter, and Citrobacter obtained in environmental samples of a Tunisian hospital. Diagn Microbiol Infect Dis 2016;86:190–193 [CrossRef][PubMed]
    [Google Scholar]
  35. Eibach D, Belmar Campos C, Krumkamp R, Al-Emran HM, Dekker D et al. Extended spectrum β-lactamase producing Enterobacteriaceae causing bloodstream infections in rural Ghana, 2007–2012. Int J Med Microbiol 2016;306:249–254 [CrossRef][PubMed]
    [Google Scholar]
  36. Johnson JR, Johnston B, Clabots C, Kuskowski MA, Castanheira M. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin Infect Dis 2010;51:286–294 [CrossRef][PubMed]
    [Google Scholar]
  37. Doi Y, Park YS, Rivera JI, Adams-Haduch JM, Hingwe A et al. Community-associated extended-spectrum β-lactamase-producing Escherichia coli infection in the United States. Clin Infect Dis 2013;56:641–648 [CrossRef][PubMed]
    [Google Scholar]
  38. Kim S, Sung JY, Cho HH, Kwon KC, Koo SH. Characteristics of the molecular epidemiology of CTX-M-producing Escherichia coli isolated from a tertiary hospital in Daejeon, Korea. J Microbiol Biotechnol 2016;26:1643–1649 [CrossRef]
    [Google Scholar]
  39. Pallecchi L, Bartoloni A, Fiorelli C, Mantella A, di Maggio T et al. Rapid dissemination and diversity of CTX-M extended-spectrum β-lactamase genes in commensal Escherichia coli isolates from healthy children from low-resource settings in Latin America. Antimicrob Agents Chemother 2007;51:2720–2725 [CrossRef][PubMed]
    [Google Scholar]
  40. Munday CJ, Xiong J, Li C, Shen D, Hawkey PM. Dissemination of CTX-M type β-lactamases in Enterobacteriaceae isolates in the People's Republic of China. Int J Antimicrob Agents 2004;23:175–180 [CrossRef][PubMed]
    [Google Scholar]
  41. Liu W, Chen L, Li H, Duan H, Zhang Y et al. Novel CTX-M β-lactamase genotype distribution and spread into multiple species of Enterobacteriaceae in Changsha, Southern China. J Antimicrob Chemother 2009;63:895–900 [CrossRef][PubMed]
    [Google Scholar]
  42. Zhang J, Zheng B, Zhao L, Wei Z, Ji J et al. Nationwide high prevalence of CTX-M and an increase of CTX-M-55 in Escherichia coli isolated from patients with community-onset infections in Chinese county hospitals. BMC Infect Dis 2014;14:659 [CrossRef][PubMed]
    [Google Scholar]
  43. Zhong YM, Liu WE, Liang XH, Li YM, Jian ZJ et al. Emergence and spread of O16-ST131 and O25b-ST131 clones among faecal CTX-M-producing Escherichia coli in healthy individuals in Hunan Province, China. J Antimicrob Chemother 2015;70:2223–2227 [CrossRef][PubMed]
    [Google Scholar]
  44. Quan J, Zhao D, Liu L, Chen Y, Zhou J et al. High prevalence of ESBL-producing Escherichia coli and Klebsiella pneumoniae in community-onset bloodstream infections in China. J Antimicrob Chemother 2017;72:273–280 [CrossRef]
    [Google Scholar]
  45. Li B, Lu Y, Lan F, He Q, Li C et al. Prevalence and characteristics of ST131 clone among unselected clinical Escherichia coli in a Chinese university hospital. Antimicrob Resist Infect Control 2017;6:118 [CrossRef][PubMed]
    [Google Scholar]
  46. Chen LF, Freeman JT, Nicholson B, Keiger A, Lancaster S et al. Widespread dissemination of CTX-M-15 genotype extended-spectrum-β-lactamase-producing Enterobacteriaceae among patients presenting to community hospitals in the southeastern United States. Antimicrob Agents Chemother 2014;58:1200–1202 [CrossRef][PubMed]
    [Google Scholar]
  47. Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP et al. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother 2008;61:273–281 [CrossRef][PubMed]
    [Google Scholar]
  48. Alghoribi MF, Gibreel TM, Farnham G, Al Johani SM, Balkhy HH et al. Antibiotic-resistant ST38, ST131 and ST405 strains are the leading uropathogenic Escherichia coli clones in Riyadh, Saudi Arabia. J Antimicrob Chemother 2015;70:2757–2762 [CrossRef]
    [Google Scholar]
  49. Peirano G, van der Bij AK, Gregson DB, Pitout JD. Molecular epidemiology over an 11-year period (2000 to 2010) of extended-spectrum β-lactamase-producing Escherichia coli causing bacteremia in a centralized Canadian region. J Clin Microbiol 2012;50:294–299 [CrossRef][PubMed]
    [Google Scholar]
  50. Oteo J, Cuevas O, Lopez-Rodriguez I, Banderas-Florido A, Vindel A et al. Emergence of CTX-M-15-producing Klebsiella pneumoniae of multilocus sequence types 1, 11, 14, 17, 20, 35 and 36 as pathogens and colonizers in newborns and adults. J Antimicrob Chemother 2009;64:524–528 [CrossRef]
    [Google Scholar]
  51. Ks K, Lee JY, Baek JY, Suh JY, Lee MY et al. Predominance of an ST11 extended-spectrum β-lactamase-producing Klebsiella pneumoniae clone causing bacteraemia and urinary tract infections in Korea. J Med Microbiol 2010;59:822–828
    [Google Scholar]
  52. Coque TM, Novais A, Carattoli A, Poirel L, Pitout J et al. Dissemination of clonally related Escherichia coli strains expressing extended-spectrum β-lactamase CTX-M-15. Emerg Infect Dis 2008;14:195–200 [CrossRef][PubMed]
    [Google Scholar]
  53. Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother 2011;66:1–14 [CrossRef]
    [Google Scholar]
  54. Ben Zakour NL, Alsheikh-Hussain AS, Ashcroft MM, Khanh Nhu NT, Roberts LW et al. Sequential acquisition of virulence and fluoroquinolone resistance has shaped the evolution of Escherichia coli ST131. mBio 2016;7:
    [Google Scholar]
  55. Petty NK, Ben Zakour NL, Stanton-Cook M, Skippington E, Totsika M et al. Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci USA 2014;111:5694–5699 [CrossRef][PubMed]
    [Google Scholar]
  56. Price LB, Johnson JR, Aziz M, Clabots C, Johnston B et al. The epidemic of extended-spectrum-β-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. MBio 2013;4:e00377-13 [CrossRef][PubMed]
    [Google Scholar]
  57. Schembri MA, Zakour NL, Phan MD, Forde BM, Stanton-Cook M et al. Molecular characterization of the multidrug resistant Escherichia coli ST131 clone. Pathogens 2015;4:422–430 [CrossRef][PubMed]
    [Google Scholar]
  58. Peirano G, van der Bij AK, Freeman JL, Poirel L, Nordmann P et al. Characteristics of Escherichia coli sequence type 131 isolates that produce extended-spectrum β-lactamases: global distribution of the H30-Rx sublineage. Antimicrob Agents Chemother 2014;58:3762–3767 [CrossRef][PubMed]
    [Google Scholar]
  59. Stoesser N, Sheppard AE, Pankhurst L, De Maio N, Moore CE et al. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. MBio 2016;7:e02162-15 [CrossRef][PubMed]
    [Google Scholar]
  60. Paul S, Linardopoulou EV, Billig M, Tchesnokova V, Price LB et al. Role of homologous recombination in adaptive diversification of extraintestinal Escherichia coli. J Bacteriol 2013;195:231–242 [CrossRef][PubMed]
    [Google Scholar]
  61. Ciesielczuk H, Doumith M, Hope R, Woodford N, Wareham DW. Characterization of the extra-intestinal pathogenic Escherichia coli ST131 clone among isolates recovered from urinary and bloodstream infections in the United Kingdom. J Med Microbiol 2015;64:1496–1503 [CrossRef][PubMed]
    [Google Scholar]
  62. Day MJ, Rodríguez I, van Essen-Zandbergen A, Dierikx C, Kadlec K et al. Diversity of STs, plasmids and ESBL genes among Escherichia coli from humans, animals and food in Germany, the Netherlands and the UK. J Antimicrob Chemother 2016;71:1178–1182 [CrossRef][PubMed]
    [Google Scholar]
  63. Doumith M, Dhanji H, Ellington MJ, Hawkey P, Woodford N. Characterization of plasmids encoding extended-spectrum β-lactamases and their addiction systems circulating among Escherichia coli clinical isolates in the UK. J Antimicrob Chemother 2012;67:878–885 [CrossRef][PubMed]
    [Google Scholar]
  64. Chen L, Hu H, Chavda KD, Zhao S, Liu R et al. Complete sequence of a KPC-producing IncN multidrug-resistant plasmid from an epidemic Escherichia coli sequence type 131 strain in China. Antimicrob Agents Chemother 2014;58:2422–2425 [CrossRef][PubMed]
    [Google Scholar]
  65. Partridge SR, Ellem JA, Tetu SG, Zong Z, Paulsen IT et al. Complete sequence of pJIE143, a pir-type plasmid carrying ISEcp1-bla CTX-M-15 from an Escherichia coli ST131 isolate. Antimicrob Agents Chemother 2011;55:5933–5935 [CrossRef][PubMed]
    [Google Scholar]
  66. Woodford N, Carattoli A, Karisik E, Underwood A, Ellington MJ et al. Complete nucleotide sequences of plasmids pEK204, pEK499, and pEK516, encoding CTX-M enzymes in three major Escherichia coli lineages from the United Kingdom, all belonging to the international O25:H4-ST131 clone. Antimicrob Agents Chemother 2009;53:4472–4482 [CrossRef][PubMed]
    [Google Scholar]
  67. Osborn AM, da Silva Tatley FM, Steyn LM, Pickup RW, Saunders JR. Mosaic plasmids and mosaic replicons: evolutionary lessons from the analysis of genetic diversity in IncFII-related replicons. Microbiology 2000;146:2267–2275 [CrossRef][PubMed]
    [Google Scholar]
  68. Villa L, García-Fernández A, Fortini D, Carattoli A. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother 2010;65:2518–2529 [CrossRef][PubMed]
    [Google Scholar]
  69. Phan MD, Forde BM, Peters KM, Sarkar S, Hancock S et al. Molecular characterization of a multidrug resistance IncF plasmid from the globally disseminated Escherichia coli ST131 clone. PLoS One 2015;10:e0122369 [CrossRef][PubMed]
    [Google Scholar]
  70. McNally A, Oren Y, Kelly D, Pascoe B, Dunn S et al. Combined analysis of variation in core, accessory and regulatory genome regions provides a super-resolution view into the evolution of bacterial populations. PLoS Genet 2016;12:e1006280 [CrossRef][PubMed]
    [Google Scholar]
  71. Klein EY, van Boeckel TP, Martinez EM, Pant S, Gandra S et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci USA 2018;115:E3463E3470 [CrossRef][PubMed]
    [Google Scholar]
  72. Meyer E, Schwab F, Schroeren-Boersch B, Gastmeier P. Dramatic increase of third-generation cephalosporin-resistant E. coli in German intensive care units: secular trends in antibiotic drug use and bacterial resistance, 2001 to 2008. Crit Care 2010;14:R113 [CrossRef][PubMed]
    [Google Scholar]
  73. McLaughlin M, Advincula MR, Malczynski M, Qi C, Bolon M et al. Correlations of antibiotic use and carbapenem resistance in Enterobacteriaceae. Antimicrob Agents Chemother 2013;57:5131–5133 [CrossRef][PubMed]
    [Google Scholar]
  74. Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm!. Trends Mol Med 2012;18:263–272 [CrossRef]
    [Google Scholar]
  75. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis 2017;215:S28–S36 [CrossRef]
    [Google Scholar]
  76. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 2001;45:1151–1161 [CrossRef][PubMed]
    [Google Scholar]
  77. Tavares CP, Pereira PS, Marques EA, Faria C, de Souza MP et al. Molecular epidemiology of KPC-2-producing Enterobacteriaceae (non-Klebsiella pneumoniae) isolated from Brazil. Diagn Microbiol Infect Dis 2015;82:326–330 [CrossRef][PubMed]
    [Google Scholar]
  78. Bradford PA, Bratu S, Urban C, Visalli M, Mariano N et al. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 β-lactamases in New York City. Clin Infect Dis 2004;39:55–60 [CrossRef][PubMed]
    [Google Scholar]
  79. Castanheira M, Costello AJ, Deshpande LM, Jones RN. Expansion of clonal complex 258 KPC-2-producing Klebsiella pneumoniae in Latin American hospitals: report of the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother 2012;56:1668–1669 [CrossRef][PubMed]
    [Google Scholar]
  80. Castanheira M, Farrell SE, Deshpande LM, Mendes RE, Jones RN. Prevalence of β-lactamase-encoding genes among Enterobacteriaceae bacteremia isolates collected in 26 U.S. hospitals: report from the SENTRY antimicrobial surveillance program (2010). Antimicrob Agents Chemother 2013;57:3012–3020 [CrossRef][PubMed]
    [Google Scholar]
  81. Chiang T, Mariano N, Urban C, Colon-Urban R, Grenner L et al. Identification of carbapenem-resistant Klebsiella pneumoniae harboring KPC enzymes in New Jersey. Microb Drug Resist 2007;13:235–240 [CrossRef][PubMed]
    [Google Scholar]
  82. Giakkoupi P, Papagiannitsis CC, Miriagou V, Pappa O, Polemis M et al. An update of the evolving epidemic of blaKPC-2-carrying Klebsiella pneumoniae in Greece (2009–10). J Antimicrob Chemother 2011;66:1510–1513 [CrossRef]
    [Google Scholar]
  83. Richter SN, Frasson I, Franchin E, Bergo C, Lavezzo E et al. KPC-mediated resistance in Klebsiella pneumoniae in two hospitals in Padua, Italy, June 2009–December 2011: massive spreading of a KPC-3-encoding plasmid and involvement of non-intensive care units. Gut Pathog 2012;4:7 [CrossRef][PubMed]
    [Google Scholar]
  84. Zhang R, Liu L, Zhou H, Chan EW, Li J et al. Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China. EBioMedicine 2017;19:98–106 [CrossRef]
    [Google Scholar]
  85. Kitchel B, Rasheed JK, Patel JB, Srinivasan A, Navon-Venezia S et al. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother 2009;53:3365–3370 [CrossRef][PubMed]
    [Google Scholar]
  86. Breurec S, Guessennd N, Timinouni M, Le TA, Cao V et al. Klebsiella pneumoniae resistant to third-generation cephalosporins in five African and two Vietnamese major towns: multiclonal population structure with two major international clonal groups, CG15 and CG258. Clin Microbiol Infect 2013;19:349–355 [CrossRef][PubMed]
    [Google Scholar]
  87. Chen L, Mathema B, Chavda KD, Deleo FR, Bonomo RA et al. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol 2014;22:686–696 [CrossRef]
    [Google Scholar]
  88. Tegmark-Wisell K, Haeggman S, Gezelius L, Thompson O, Gustafsson I et al. Identification of Klebsiella pneumoniae carbapenemase in Sweden. Euro Surveill 2007;12:3333
    [Google Scholar]
  89. Maltezou HC, Giakkoupi P, Maragos A, Bolikas M, Raftopoulos V et al. Outbreak of infections due to KPC-2-producing Klebsiella pneumoniae in a hospital in Crete (Greece). J Infect 2009;58:213–219 [CrossRef]
    [Google Scholar]
  90. Pournaras S, Protonotariou E, Voulgari E, Kristo I, Dimitroulia E et al. Clonal spread of KPC-2 carbapenemase-producing Klebsiella pneumoniae strains in Greece. J Antimicrob Chemother 2009;64:348–352 [CrossRef]
    [Google Scholar]
  91. Souli M, Galani I, Antoniadou A, Papadomichelakis E, Poulakou G et al. An outbreak of infection due to β‐lactamase Klebsiella pneumoniae carbapenemase 2-producing K. pneumoniae in a Greek University Hospital: molecular characterization, epidemiology, and outcomes. Clin Infect Dis 2010;50:364–373 [CrossRef][PubMed]
    [Google Scholar]
  92. Kontopoulou K, Protonotariou E, Vasilakos K, Kriti M, Koteli A et al. Hospital outbreak caused by Klebsiella pneumoniae producing KPC-2 β-lactamase resistant to colistin. J Hosp Infect 2010;76:70–73 [CrossRef][PubMed]
    [Google Scholar]
  93. Tumbarello M, Trecarichi EM, De Rosa FG, Giannella M, Giacobbe DR et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicrob Chemother 2015;70:2133–2143 [CrossRef][PubMed]
    [Google Scholar]
  94. Zarkotou O, Pournaras S, Tselioti P, Dragoumanos V, Pitiriga V et al. Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect 2011;17:1798–1803 [CrossRef][PubMed]
    [Google Scholar]
  95. Lübbert C, Becker-Rux D, Rodloff AC, Laudi S, Busch T et al. Colonization of liver transplant recipients with KPC-producing Klebsiella pneumoniae is associated with high infection rates and excess mortality: a case-control analysis. Infection 2014;42:309–316 [CrossRef][PubMed]
    [Google Scholar]
  96. Bogaerts P, Montesinos I, Rodriguez-Villalobos H, Blairon L, Deplano A et al. Emergence of clonally related Klebsiella pneumoniae isolates of sequence type 258 producing KPC-2 carbapenemase in Belgium. J Antimicrob Chemother 2010;65:361–362 [CrossRef]
    [Google Scholar]
  97. Chua KY, Grayson ML, Burgess AN, Lee JY, Howden BP. The growing burden of multidrug-resistant infections among returned Australian travellers. Med J Aust 2014;200:116–118 [CrossRef][PubMed]
    [Google Scholar]
  98. Lopez JA, Correa A, Navon-Venezia S, Correa AL, Torres JA et al. Intercontinental spread from Israel to Colombia of a KPC-3-producing Klebsiella pneumoniae strain. Clin Microbiol Infect 2011;17:52–56 [CrossRef][PubMed]
    [Google Scholar]
  99. Naas T, Nordmann P, Vedel G, Poyart C. Plasmid-mediated carbapenem-hydrolyzing β-lactamase KPC in a Klebsiella pneumoniae isolate from France. Antimicrob Agents Chemother 2005;49:4423–4424 [CrossRef][PubMed]
    [Google Scholar]
  100. Samuelsen O, Naseer U, Tofteland S, Skutlaberg DH, Onken A et al. Emergence of clonally related Klebsiella pneumoniae isolates of sequence type 258 producing plasmid-mediated KPC carbapenemase in Norway and Sweden. J Antimicrob Chemother 2009;63:654–658 [CrossRef]
    [Google Scholar]
  101. Wendt C, Schütt S, Dalpke AH, Konrad M, Mieth M et al. First outbreak of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in Germany. Eur J Clin Microbiol Infect Dis 2010;29:563–570 [CrossRef][PubMed]
    [Google Scholar]
  102. Kanerva M, Skogberg K, Ryynänen K, Pahkamäki A, Jalava J et al. Coincidental detection of the first outbreak of carbapenemase-producing Klebsiella pneumoniae colonisation in a primary care hospital, Finland, 2013. Euro Surveill 2015;20:21172 [CrossRef][PubMed]
    [Google Scholar]
  103. Kwong JC, Lane CR, Romanes F, Gonçalves da Silva A, Easton M et al. Translating genomics into practice for real-time surveillance and response to carbapenemase-producing Enterobacteriaceae: evidence from a complex multi-institutional KPC outbreak. PeerJ 2018;6:e4210 [CrossRef][PubMed]
    [Google Scholar]
  104. Chen S, Hu F, Xu X, Liu Y, Wu W et al. High prevalence of KPC-2-type carbapenemase coupled with CTX-M-type extended-spectrum β-lactamases in carbapenem-resistant Klebsiella pneumoniae in a teaching hospital in China. Antimicrob Agents Chemother 2011;55:2493–2494 [CrossRef][PubMed]
    [Google Scholar]
  105. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013;13:785–796 [CrossRef]
    [Google Scholar]
  106. Qi Y, Wei Z, Ji S, Du X, Shen P et al. ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J Antimicrob Chemother 2011;66:307–312 [CrossRef]
    [Google Scholar]
  107. Stoesser N, Sheppard AE, Peirano G, Anson LW, Pankhurst L et al. Genomic epidemiology of global Klebsiella pneumoniae carbapenemase (KPC)-producing Escherichia coli. Sci Rep 2017;7:5917 [CrossRef]
    [Google Scholar]
  108. Cuzon G, Naas T, Nordmann P. Functional characterization of Tn4401, a Tn3-based transposon involved in bla KPC gene mobilization. Antimicrob Agents Chemother 2011;55:5370–5373
    [Google Scholar]
  109. Naas T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP et al. Genetic structures at the origin of acquisition of the β-lactamase blaKPC gene. Antimicrob Agents Chemother 2008;52:1257–1263 [CrossRef][PubMed]
    [Google Scholar]
  110. Chen L, Chavda KD, Al Laham N, Melano RG, Jacobs MR et al. Complete nucleotide sequence of a bla KPC-harboring IncI2 plasmid and its dissemination in New Jersey and New York hospitals. Antimicrob Agents Chemother 2013;57:5019–5025 [CrossRef][PubMed]
    [Google Scholar]
  111. Chmelnitsky I, Shklyar M, Leavitt A, Sadovsky E, Navon-Venezia S et al. Mix and match of KPC-2 encoding plasmids in Enterobacteriaceae-comparative genomics. Diagn Microbiol Infect Dis 2014;79:255–260 [CrossRef][PubMed]
    [Google Scholar]
  112. Andrade LN, Curiao T, Ferreira JC, Longo JM, Clímaco EC et al. Dissemination of bla KPC-2 by the spread of Klebsiella pneumoniae clonal complex 258 clones (ST258, ST11, ST437) and plasmids (IncFII, IncN, IncL/M) among Enterobacteriaceae species in Brazil. Antimicrob Agents Chemother 2011;55:3579–3583 [CrossRef][PubMed]
    [Google Scholar]
  113. Ho PL, Cheung YY, Lo WU, Li Z, Chow KH et al. Molecular characterization of an atypical IncX3 plasmid pKPC-NY79 carrying blaKPC-2 in a Klebsiella pneumoniae. Curr Microbiol 2013;67:493–498
    [Google Scholar]
  114. Cerqueira GC, Earl AM, Ernst CM, Grad YH, Dekker JP et al. Multi-institute analysis of carbapenem resistance reveals remarkable diversity, unexplained mechanisms, and limited clonal outbreaks. Proc Natl Acad Sci USA 2017;114:1135–1140 [CrossRef][PubMed]
    [Google Scholar]
  115. Esteban-Cantos A, Aracil B, Bautista V, Ortega A, Lara N et al. The carbapenemase-producing Klebsiella pneumoniae population is distinct and more clonal than the carbapenem-susceptible population. Antimicrob Agents Chemother 2017;61:e02520-16 [CrossRef][PubMed]
    [Google Scholar]
  116. Gomez SA, Pasteran FG, Faccone D, Tijet N, Rapoport M et al. Clonal dissemination of Klebsiella pneumoniae ST258 harbouring KPC-2 in Argentina. Clin Microbiol Infect 2011;17:1520–1524 [CrossRef][PubMed]
    [Google Scholar]
  117. Weterings V, Zhou K, Rossen JW, van Stenis D, Thewessen E et al. An outbreak of colistin-resistant Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae in the Netherlands (July to December 2013), with inter-institutional spread. Eur J Clin Microbiol Infect Dis 2015;34:1647–1655 [CrossRef][PubMed]
    [Google Scholar]
  118. Sheppard AE, Stoesser N, Wilson DJ, Sebra R, Kasarskis A et al. Nested russian doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene bla KPC. Antimicrob Agents Chemother 2016;60:3767–3778 [CrossRef]
    [Google Scholar]
  119. Kanamori HPC, Juliano JJ, van Duin D, Cairns BA, Weber DJ et al. A prolonged outbreak of KPC-3-producing Enterobacter cloacae and Klebsiella pneumoniae driven by multiple mechanisms of resistance transmission at a large academic burn center. Antimicrob Agents Chemother 2016;61:e01516-16
    [Google Scholar]
  120. Mathers AJ, Stoesser N, Sheppard AE, Pankhurst L, Giess A et al. Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae at a single institution: insights into endemicity from whole-genome sequencing. Antimicrob Agents Chemother 2015;59:1656–1663 [CrossRef][PubMed]
    [Google Scholar]
  121. Zong Z, Yu F, Connor C, Fenn S, McNally A. Complete genomic characterisation of two Escherichia coli lineages responsible for a cluster of carbapenem resistant infections in a Chinese hospital. bioRxiv 2018
    [Google Scholar]
  122. Pl H, Cheung YY, Wang Y, Wu L, Lai EL et al. Characterization of carbapenem-resistant Escherichia coli and Klebsiella pneumoniae from a healthcare region in Hong Kong. European J Clin Microbiol Infect Dis 2016;35:379–385
    [Google Scholar]
  123. Chavda KD, Chen L, Jacobs MR, Bonomo RA, Kreiswirth BN. Molecular diversity and plasmid analysis of KPC-producing Escherichia coli. Antimicrob Agents Chemother 2016;60:4073–4081 [CrossRef]
    [Google Scholar]
  124. Kazmierczak KM, Rabine S, Hackel M, McLaughlin RE, Biedenbach DJ et al. Multiyear, multinational survey of the incidence and global distribution of metallo-β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016;60:1067–1078 [CrossRef][PubMed]
    [Google Scholar]
  125. Bathoorn E, Rossen JW, Lokate M, Friedrich AW, Hammerum AM. Isolation of an NDM-5-producing ST16 Klebsiella pneumoniae from a Dutch patient without travel history abroad, August 2015. Euro Surveill 2015;20:30040 [CrossRef][PubMed]
    [Google Scholar]
  126. Huang TW, Wang JT, Lauderdale TL, Liao TL, Lai JF et al. Complete sequences of two plasmids in a bla NDM-1-positive Klebsiella oxytoca isolate from Taiwan. Antimicrob Agents Chemother 2013;57:4072–4076 [CrossRef][PubMed]
    [Google Scholar]
  127. Stoesser N, Giess A, Batty EM, Sheppard AE, Walker AS et al. Genome sequencing of an extended series of NDM-producing Klebsiella pneumoniae isolates from neonatal infections in a Nepali hospital characterizes the extent of community- versus hospital-associated transmission in an endemic setting. Antimicrob Agents Chemother 2014;58:7347–7357 [CrossRef][PubMed]
    [Google Scholar]
  128. Wailan AM, Paterson DL, Kennedy K, Ingram PR, Bursle E et al. Genomic characteristics of NDM-producing Enterobacteriaceae isolates in Australia and their bla NDMgenetic contexts. Antimicrob Agents Chemother 2016;60:136–141 [CrossRef]
    [Google Scholar]
  129. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K et al. Characterization of a new metallo-β-lactamase gene, bla NDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 2009;60:5046–5054
    [Google Scholar]
  130. Chihara S, Okuzumi K, Yamamoto Y, Oikawa S, Hishinuma A. First case of New Delhi metallo-β-lactamase 1-producing Escherichia coli infection in Japan. Clin Infect Dis 2011;52:153–154 [CrossRef][PubMed]
    [Google Scholar]
  131. Gaibani P, Ambretti S, Berlingeri A, Cordovana M, Farruggia P et al. Outbreak of NDM-1-producing Enterobacteriaceae in northern Italy, July to August 2011. Euro Surveill 2011;16:20027[PubMed]
    [Google Scholar]
  132. McDermott H, Morris D, McArdle E, O'Mahony G, Kelly S et al. Isolation of NDM-1-producing Klebsiella pneumoniae in Ireland, July 2011. Euro Surveill 2012;17:20087[PubMed]
    [Google Scholar]
  133. Nielsen JB, Hansen F, Littauer P, Schonning K, Hammerum AM. An NDM-1-producing Escherichia coli obtained in Denmark has a genetic profile similar to an NDM-1-producing E. coli isolate from the UK. J Antimicrob Chemother 2012;67:2049–2051 [CrossRef]
    [Google Scholar]
  134. Osterblad M, Kirveskari J, Hakanen AJ, Tissari P, Vaara M et al. Carbapenemase-producing Enterobacteriaceae in Finland: the first years (2008–11). J Antimicrob Chemother 2012;67:2860–2864 [CrossRef]
    [Google Scholar]
  135. Oteo J, Domingo-Garcia D, Fernandez-Romero S, Saez D, Guiu A et al. Abdominal abscess due to NDM-1-producing Klebsiella pneumoniae in Spain. J Med Microbiol 2012;61:864–867 [CrossRef]
    [Google Scholar]
  136. Peirano G, Ahmed-Bentley J, Woodford N, Pitout JD. New Delhi metallo-β-lactamase from traveler returning to Canada. Emerg Infect Dis 2011;17:242–244 [CrossRef][PubMed]
    [Google Scholar]
  137. Pfeifer Y, Witte W, Holfelder M, Busch J, Nordmann P et al. NDM-1-producing Escherichia coli in Germany. Antimicrob Agents Chemother 2011;55:1318–1319 [CrossRef][PubMed]
    [Google Scholar]
  138. Poirel L, Lagrutta E, Taylor P, Pham J, Nordmann P. Emergence of metallo-β-lactamase NDM-1-producing multidrug-resistant Escherichia coli in Australia. Antimicrob Agents Chemother 2010;54:4914–4916 [CrossRef][PubMed]
    [Google Scholar]
  139. Samuelsen Ø, Thilesen CM, Heggelund L, Vada AN, Kümmel A et al. Identification of NDM-1-producing Enterobacteriaceae in Norway. J Antimicrob Chemother 2011;66:670–672 [CrossRef][PubMed]
    [Google Scholar]
  140. Tijet N, Alexander DC, Richardson D, Lastovetska O, Low DE et al. New Delhi metallo-beta-lactamase, Ontario, Canada. Emerg Infect Dis 2011;17:306–307 [CrossRef][PubMed]
    [Google Scholar]
  141. Williamson DA, Sidjabat HE, Freeman JT, Roberts SA, Silvey A et al. Identification and molecular characterisation of New Delhi metallo-β-lactamase-1 (NDM-1)- and NDM-6-producing Enterobacteriaceae from New Zealand hospitals. Int J Antimicrob Agents 2012;39:529–533 [CrossRef][PubMed]
    [Google Scholar]
  142. Wu HS, Chen T-L, Chen IC-J, Huang M-S, Wang F-D et al. First identification of a patient colonized with Klebsiella pneumoniae carrying bla NDM-1 in Taiwan. J Chin Med Assoc 2010;73:596–598
    [Google Scholar]
  143. Zarfel G, Hoenigl M, Leitner E, Salzer HJ, Feierl G et al. Emergence of New Delhi metallo-β-lactamase, Austria. Emerg Infect Dis 2011;17:129–130 [CrossRef][PubMed]
    [Google Scholar]
  144. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 2010;10:597–602 [CrossRef]
    [Google Scholar]
  145. Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 2011;11:355–362 [CrossRef]
    [Google Scholar]
  146. Dortet L, Poirel L, Nordmann P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed Res Int 2014;2014:249856 [CrossRef][PubMed]
    [Google Scholar]
  147. Albiger B, Glasner C, Struelens MJ, Grundmann H, Monnet DL et al. Carbapenemase-producing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May 2015. Euro Surveill 2015;20:30062 [CrossRef][PubMed]
    [Google Scholar]
  148. Phan HTT, Stoesser N, Maciuca IE, Toma F, Szekely E et al. Illumina short-read and MinION long-read WGS to characterize the molecular epidemiology of an NDM-1 Serratia marcescens outbreak in Romania. J Antimicrob Chemother 2018;73:672–679 [CrossRef][PubMed]
    [Google Scholar]
  149. Bosch T, Lutgens SPM, Hermans MHA, Wever PC, Schneeberger PM et al. Outbreak of NDM-1-producing Klebsiella pneumoniae in a Dutch hospital, with interspecies transfer of the resistance plasmid and unexpected occurrence in unrelated health care centers. J Clin Microbiol 2017;55:2380–2390 [CrossRef][PubMed]
    [Google Scholar]
  150. Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect 2014;20:821–830 [CrossRef][PubMed]
    [Google Scholar]
  151. Sekizuka T, Matsui M, Yamane K, Takeuchi F, Ohnishi M et al. Complete sequencing of the bla NDM-1-positive IncA/C plasmid from Escherichia coli ST38 isolate suggests a possible origin from plant pathogens. PLoS One 2011;6:e25334 [CrossRef][PubMed]
    [Google Scholar]
  152. Villa L, Poirel L, Nordmann P, Carta C, Carattoli A. Complete sequencing of an IncH plasmid carrying the bla NDM-1, bla CTX-M-15 and qnrB1 genes. J Antimicrob Chemother 2012;67:1645–1650 [CrossRef][PubMed]
    [Google Scholar]
  153. Wailan AM, Sartor AL, Zowawi HM, Perry JD, Paterson DL et al. Genetic contexts of bla NDM-1 in patients carrying multiple NDM-producing strains. Antimicrob Agents Chemother 2015;59:7405–7410 [CrossRef]
    [Google Scholar]
  154. Giske CG, Fröding I, Hasan CM, Turlej-Rogacka A, Toleman M et al. Diverse sequence types of Klebsiella pneumoniae contribute to the dissemination of bla NDM-1 in India, Sweden, and the United Kingdom. Antimicrob Agents Chemother 2012;56:2735–2738 [CrossRef][PubMed]
    [Google Scholar]
  155. Khong WX, Xia E, Marimuthu K, Xu W, Teo YY et al. Local transmission and global dissemination of New Delhi metallo-β-lactamase (NDM): a whole genome analysis. BMC Genomics 2016;17:452 [CrossRef][PubMed]
    [Google Scholar]
  156. Wailan AM, Sidjabat HE, Yam WK, Alikhan NF, Petty NK et al. Mechanisms involved in acquisition of bla NDM genes by IncA/C2 and IncFIIY plasmids. Antimicrob Agents Chemother 2016;60:4082–4088
    [Google Scholar]
  157. Toleman MA, Spencer J, Jones L, Walsh TR. blaNDM-1 is a chimera likely constructed in Acinetobacter baumannii. Antimicrob Agents Chemother 2012;56:2773–2776 [CrossRef][PubMed]
    [Google Scholar]
  158. Lauretti L, Riccio M, Mazzariol A, Cornaglia G, Amicosante G et al. Cloning and characterization of bla VIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 1999;43:1584–1590
    [Google Scholar]
  159. Matsumura Y, Peirano G, Devinney R, Bradford PA, Motyl MR et al. Genomic epidemiology of global VIM-producing Enterobacteriaceae. J Antimicrob Chemother 2017;72:2249–2258 [CrossRef]
    [Google Scholar]
  160. Esposito EP, Gaiarsa S, Del Franco M, Crivaro V, Bernardo M et al. A novel IncA/C1 group conjugative plasmid, encoding VIM-1 metallo-β-lactamase, mediates the acquisition of carbapenem resistance in ST104 Klebsiella pneumoniae isolates from neonates in the intensive care unit of V. Monaldi Hospital in Naples. Front Microbiol 2017;8:2135 [CrossRef]
    [Google Scholar]
  161. Papagiannitsis CC, Izdebski R, Baraniak A, Fiett J, Herda M et al. Survey of metallo-β-lactamase-producing Enterobacteriaceae colonizing patients in European ICUs and rehabilitation units, 2008–11. J Antimicrob Chemother 2015;70:1981–1988 [CrossRef][PubMed]
    [Google Scholar]
  162. Ito H, Arakawa Y, Ohsuka S, Wacharotayankun R, Kato N et al. Plasmid-mediated dissemination of the metallo-β-lactamase gene bla IMP among clinically isolated strains of Serratia marcescens. Antimicrob Agents Chemother 1995;39:824–829 [CrossRef][PubMed]
    [Google Scholar]
  163. Sidjabat HE, Townell N, Nimmo GR, George NM, Robson J et al. Dominance of IMP-4-producing Enterobacter cloacae among carbapenemase-producing Enterobacteriaceae in Australia. Antimicrob Agents Chemother 2015;59:4059–4066 [CrossRef][PubMed]
    [Google Scholar]
  164. Matsumura Y, Peirano G, Motyl MR, Adams MD, Chen L et al. Global molecular epidemiology of IMP-producing Enterobacteriaceae. Antimicrob Agents Chemother 2017;61:e02729-16 [CrossRef]
    [Google Scholar]
  165. Yamazaki Y, Funaki T, Yasuhara T, Sugano E, Ugajin K et al. Molecular characteristics of a carbapenemase-producing Enterobacter species and Klebsiella species outbreak in a Japanese University Hospital. Showa Univer J Med Sciences 2017;29:163–172 [CrossRef]
    [Google Scholar]
  166. Yamamoto N, Asada R, Kawahara R, Hagiya H, Akeda Y et al. Prevalence of, and risk factors for, carriage of carbapenem-resistant Enterobacteriaceae among hospitalized patients in Japan. J Hosp Infect 2017;97:212–217 [CrossRef]
    [Google Scholar]
  167. Peleg AY, Franklin C, Bell JM, Spelman DW. Dissemination of the metallo-β-lactamase gene bla IMP-4 among Gram-negative pathogens in a clinical setting in Australia. Clin Infect Dis 2005;2005:1549–1556
    [Google Scholar]
  168. Sidjabat HE, Robson J, Paterson DL. Draft genome sequences of two IMP-4-producing Escherichia coli sequence type 131 isolates in Australia. Genome Announc 2015;3:e00983-15 [CrossRef][PubMed]
    [Google Scholar]
  169. Stoesser N, Sheppard AE, Peirano G, Sebra RP, Lynch T et al. First report of bla IMP-14 on a plasmid harboring multiple drug resistance genes in Escherichia coli sequence type 131. Antimicrob Agents Chemother 2016;60:5068–5071 [CrossRef]
    [Google Scholar]
  170. Aktas Z, Kayacan CB, Schneider I, Can B, Midilli K et al. Carbapenem-hydrolyzing oxacillinase, OXA-48, persists in Klebsiella pneumoniae in Istanbul, Turkey. Chemotherapy 2008;54:101–106
    [Google Scholar]
  171. Carrër A, Poirel L, Eraksoy H, Cagatay AA, Badur S et al. Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob Agents Chemother 2008;52:2950–2954 [CrossRef][PubMed]
    [Google Scholar]
  172. Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 2004;48:15–22 [CrossRef][PubMed]
    [Google Scholar]
  173. Mataseje LF, Boyd DA, Fuller J, Haldane D, Hoang L et al. Characterization of OXA-48-like carbapenemase producers in Canada, 2011–14. J Antimicrob Chemother 2018;73:626–633 [CrossRef]
    [Google Scholar]
  174. Potron A, Poirel L, Rondinaud E, Nordmann P. Intercontinental spread of OXA-48 β-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. Euro Surveill 2013;18:20549 [CrossRef][PubMed]
    [Google Scholar]
  175. Potron A, Kalpoe J, Poirel L, Nordmann P. European dissemination of a single OXA-48-producing Klebsiella pneumoniae clone. Clin Microbiol Infect 2011;17:E24E26 [CrossRef][PubMed]
    [Google Scholar]
  176. Kilic A, Aktas Z, Bedir O, Gumral R, Bulut Y et al. Identification and characterization of OXA-48 producing, carbapenem-resistant Enterobacteriaceae isolates in Turkey. Ann Clin Lab Sci 2011;41:161–166
    [Google Scholar]
  177. Moubareck CA, Mouftah SF, Pál T, Ghazawi A, Halat DH et al. Clonal emergence of Klebsiella pneumoniae ST14 co-producing OXA-48-type and NDM carbapenemases with high rate of colistin resistance in Dubai, United Arab Emirates. Int J Antimicrob Agents 2018;52:90–95 [CrossRef][PubMed]
    [Google Scholar]
  178. Solgi H, Giske CG, Badmasti F, Aghamohammad S, Havaei SA et al. Emergence of carbapenem resistant Escherichia coli isolates producing bla NDM and bla OXA-48-like carried on IncA/C and IncL/M plasmids at two Iranian university hospitals. Infect Genet Evol 2017;55:318–323 [CrossRef][PubMed]
    [Google Scholar]
  179. Loucif L, Chelaghma W, Helis Y, Sebaa F, Baoune RD et al. First detection of OXA-48-producing Klebsiella pneumoniae in community-acquired urinary tract infection in Algeria. J Glob Antimicrob Resist 2018;12:115–116 [CrossRef]
    [Google Scholar]
  180. Jhang J, Wang HY, Yoo G, Hwang GY, Uh Y et al. NDM-5 and OXA-48 co-producing uropathogenic Escherichia coli isolate: first case in Korea. Ann Lab Med 2018;38:277–279 [CrossRef][PubMed]
    [Google Scholar]
  181. Poirel L, Héritier C, Nordmann P. Chromosome-encoded ambler class D β-lactamase of Shewanella oneidensis as a progenitor of carbapenem-hydrolyzing oxacillinase. Antimicrob Agents Chemother 2004;48:348–351 [CrossRef][PubMed]
    [Google Scholar]
  182. Lyman M, Walter M, Lonsway D, Rasheed K, Limbago B et al. Notes from the field: carbapenem-resistant Enterobacteriaceae producing OXA-48-like carbapenemases – United States, 2010–2015. MMWR 2015;64:1315–1316
    [Google Scholar]
  183. Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 2012;67:1597–1606 [CrossRef]
    [Google Scholar]
  184. Aubert D, Naas T, Héritier C, Poirel L, Nordmann P. Functional characterization of IS1999, an IS4 family element involved in mobilization and expression of β-lactam resistance genes. J Bacteriol 2006;188:6506–6514 [CrossRef][PubMed]
    [Google Scholar]
  185. Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother 2012;56:559–562 [CrossRef][PubMed]
    [Google Scholar]
  186. Giani T, Conte V, di Pilato V, Aschbacher R, Weber C et al. Escherichia coli from Italy producing OXA-48 carbapenemase encoded by a novel Tn1999 transposon derivative. Antimicrob Agents Chemother 2012;56:2211–2213 [CrossRef][PubMed]
    [Google Scholar]
  187. Potron A, Nordmann P, Rondinaud E, Jaureguy F, Poirel L. A mosaic transposon encoding OXA-48 and CTX-M-15: towards pan-resistance. J Antimicrob Chemother 2013;68:476–477 [CrossRef]
    [Google Scholar]
  188. Findlay J, Hopkins KL, Loy R, Doumith M, Meunier D et al. OXA-48-like carbapenemases in the UK: an analysis of isolates and cases from 2007 to 2014. J Antimicrob Chemother 2017;72:1340–1349 [CrossRef]
    [Google Scholar]
  189. Gaibani P, Scaltriti E, Benni C, Pongolini S, Ambretti S et al. Characterization of an IncL/M plasmid carrying bla OXA-48 in a Klebsiella pneumoniae strain from Italy. New Microbiologica 2017;40:284–285
    [Google Scholar]
  190. Izdebski R, Baraniak A, Zabicka D, Machulska M, Urbanowicz P et al. Enterobacteriaceae producing OXA-48-like carbapenemases in Poland, 2013-January 2017. J Antimicrob Chemother 2018;73:620–625 [CrossRef][PubMed]
    [Google Scholar]
  191. Lutgring JD, Zhu W, de Man TJB, Avillan JJ, Anderson KF et al. Phenotypic and genotypic characterization of Enterobacteriaceae producing oxacillinase-48-like carbapenemases, United States. Emerg Infect Dis 2018;24:700–709 [CrossRef][PubMed]
    [Google Scholar]
  192. Skalova A, Chudejova K, Rotova V, Medvecky M, Studentova V et al. Molecular characterization of OXA-48-like-producing Enterobacteriaceae in the Czech Republic and evidence for horizontal transfer of pOXA-48-like plasmids. Antimicrob Agents Chemother 2016;61:e01889-16 [CrossRef][PubMed]
    [Google Scholar]
  193. Yu F, Wang S, Lv J, Qi X, Guo Y et al. Coexistence of OXA-48-producing Klebsiella pneumoniae and Escherichia coli in a hospitalized patient who returned from Europe to China. Antimicrob Agents Chemother 2017;61:e02580-16 [CrossRef][PubMed]
    [Google Scholar]
  194. Balkan II, Aygün G, Aydın S, Mutcalı SI, Kara Z et al. Blood stream infections due to OXA-48-like carbapenemase-producing Enterobacteriaceae: treatment and survival. Int J Infect Dis 2014;26:51–56 [CrossRef][PubMed]
    [Google Scholar]
  195. Castanheira M, Deshpande LM, Mathai D, Bell JM, Jones RN et al. Early dissemination of NDM-1- and OXA-181-producing Enterobacteriaceae in Indian hospitals: report from the SENTRY antimicrobial surveillance program, 2006–2007. Antimicrob Agents Chemother 2011;55:1274–1278 [CrossRef][PubMed]
    [Google Scholar]
  196. Decousser JW, Poirel L, Desroches M, Jayol A, Denamur E et al. Failure to detect carbapenem-resistant Escherichia coli producing OXA-48-like using the Xpert Carba-R assay®. Clin Microbiol Infect 2015;21:e9–e10 [CrossRef][PubMed]
    [Google Scholar]
  197. Kalpoe JS, Al Naiemi N, Poirel L, Nordmann P. Detection of an Ambler class D OXA-48-type β-lactamase in a Klebsiella pneumoniae strain in The Netherlands. J Med Microbiol 2011;60:677–678 [CrossRef][PubMed]
    [Google Scholar]
  198. Potron A, Nordmann P, Lafeuille E, Al Maskari Z, Al Rashdi F et al. Characterization of OXA-181, a carbapenem-hydrolyzing class D β-lactamase from Klebsiella pneumoniae. Antimicrob Agents Chemother 2011;55:4896–4899 [CrossRef][PubMed]
    [Google Scholar]
  199. Williamson DA, Heffernan H, Sidjabat H, Roberts SA, Paterson DL et al. Intercontinental transfer of OXA-181-producing Klebsiella pneumoniae into New Zealand. J Antimicrob Chemother 2011;66:2888–2890 [CrossRef]
    [Google Scholar]
  200. Cho SY, Huh HJ, Baek JY, Chung NY, Ryu JG et al. Klebsiella pneumoniae co-producing NDM-5 and OXA-181 carbapenemases, South Korea. Emerg Infect Dis 2015;21:1088–1089 [CrossRef][PubMed]
    [Google Scholar]
  201. Gamal D, Fernández-Martínez M, El-Defrawy I, Ocampo-Sosa AA, Martínez-Martínez L. First identification of NDM-5 associated with OXA-181 in Escherichia coli from Egypt. Emerg Microbes Infect 2016;5:e30 [CrossRef][PubMed]
    [Google Scholar]
  202. Overballe-Petersen S, Roer L, Ng K, Hansen F, Justesen US et al. Complete nucleotide sequence of an Escherichia coli sequence type 410 strain carrying bla NDM-5 on an IncF multidrug resistance plasmid and bla OXA-181 on an IncX3 Plasmid. Genome Announc 2018;6:e01542-17 [CrossRef][PubMed]
    [Google Scholar]
  203. Adriaenssens N, Coenen S, Versporten A, Muller A, Minalu G et al. European surveillance of antimicrobial consumption (ESAC): outpatient antibiotic use in Europe (1997–2009). J Antimicrob Chemother 2011;66:vi3–vi12 [CrossRef][PubMed]
    [Google Scholar]
  204. Arcilla MS, van Hattem JM, Haverkate MR, Bootsma MCJ, van Genderen PJJ et al. Import and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae by international travellers (COMBAT study): a prospective, multicentre cohort study. Lancet Infect Dis 2017;17:78–85 [CrossRef]
    [Google Scholar]
  205. Bengtsson-Palme J, Angelin M, Huss M, Kjellqvist S, Kristiansson E et al. The human gut microbiome as a transporter of antibiotic resistance genes between continents. Antimicrob Agents Chemother 2015;59:6551–6560 [CrossRef]
    [Google Scholar]
  206. Lübbert C, Straube L, Stein C, Makarewicz O, Schubert S et al. Colonization with extended-spectrum β-lactamase-producing and carbapenemase-producing Enterobacteriaceae in international travelers returning to Germany. Int J Med Microbiol 2015;305:148–156 [CrossRef][PubMed]
    [Google Scholar]
  207. Ruppé E, Armand-Lefèvre L, Estellat C, Consigny PH, El Mniai A et al. High rate of acquisition but short duration of carriage of multidrug-resistant Enterobacteriaceae after travel to the tropics. Clin Infect Dis 2015;61:593–600 [CrossRef][PubMed]
    [Google Scholar]
  208. von Wintersdorff CJ, Penders J, Stobberingh EE, Oude Lashof AM, Hoebe CJ et al. High rates of antimicrobial drug resistance gene acquisition after international travel, The Netherlands. Emerg Infect Dis 2014;20:649–657 [CrossRef][PubMed]
    [Google Scholar]
  209. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016;16:161–168 [CrossRef][PubMed]
    [Google Scholar]
  210. European Centre for Disease Prevention and Control Summary of the Latest Data on Antibiotic Consumption in the European Union Stockholm: European Centre for Disease Prevention and Control; 2017
    [Google Scholar]
  211. Zheng B, Dong H, Xu H, Lv J, Zhang J et al. Coexistence of MCR-1 and NDM-1 in clinical Escherichia coli isolates. Clin Infect Dis 2016;63:1393–1395 [CrossRef][PubMed]
    [Google Scholar]
  212. Newton-Foot M, Snyman Y, Maloba MRB, Whitelaw AC. Plasmid-mediated mcr-1 colistin resistance in Escherichia coli and Klebsiella spp. clinical isolates from the Western Cape region of South Africa. Antimicrob Resist Infect Control 2017;6:78 [CrossRef][PubMed]
    [Google Scholar]
  213. Tian G-B, Doi Y, Shen J, Walsh TR, Wang Y et al. MCR-1-producing Klebsiella pneumoniae outbreak in China. Lancet Infect Dis 2017;17:577 [CrossRef]
    [Google Scholar]
  214. Li A, Yang Y, Miao M, Chavda KD, Mediavilla JR et al. Complete sequences of mcr-1-harboring plasmids from extended-spectrum-β-lactamase- and carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother 2016;60:4351–4354 [CrossRef][PubMed]
    [Google Scholar]
  215. Skov RL, Monnet DL. Plasmid-mediated colistin resistance (mcr-1 gene): three months later, the story unfolds. Euro Surveill 2016;21:30155 [CrossRef][PubMed]
    [Google Scholar]
  216. Schwarz S, Johnson AP. Transferable resistance to colistin: a new but old threat. J Antimicrob Chemother 2016;71:2066–2070 [CrossRef][PubMed]
    [Google Scholar]
  217. Snesrud E, He S, Chandler M, Dekker JP, Hickman AB et al. A model for transposition of the colistin resistance gene mcr-1 by ISApl1. Antimicrob Agents Chemother 2016;60:6973–6976 [CrossRef][PubMed]
    [Google Scholar]
  218. Poirel L, Kieffer N, Nordmann P. In vitro study of ISApl1-mediated mobilization of the colistin resistance gene mcr-1. Antimicrob Agents Chemother 2017;61:e00127-17 [CrossRef][PubMed]
    [Google Scholar]
  219. Snesrud E, McGann P, Chandler M. The birth and demise of the ISApl1-mcr-1-ISApl1 composite transposon: the vehicle for transferable colistin resistance. MBio 2018;9:e02381-17 [CrossRef][PubMed]
    [Google Scholar]
  220. Beyrouthy R, Robin F, Lessene A, Lacombat I, Dortet L et al. MCR-1 and OXA-48 in vivo acquisition in KPC-producing Escherichia coli after colistin treatment. Antimicrob Agents Chemother 2017;61:e02540-16 [CrossRef][PubMed]
    [Google Scholar]
  221. McGann P, Snesrud E, Maybank R, Corey B, Ong AC et al. Escherichia coli harboring mcr-1 and bla CTX-M on a novel IncF plasmid: first report of mcr-1 in the United States. Antimicrob Agents Chemother 2016;60:4420–4421 [CrossRef][PubMed]
    [Google Scholar]
  222. Mediavilla JR, Patrawalla A, Chen L, Chavda KD, Mathema B et al. Colistin- and carbapenem-resistant Escherichia coli harboring mcr-1 and bla NDM-5, causing a complicated urinary tract infection in a patient from the United States. MBio 2016;7:e01191-16 [CrossRef][PubMed]
    [Google Scholar]
  223. Wang Y, Tian GB, Zhang R, Shen Y, Tyrrell JM et al. Prevalence, risk factors, outcomes, and molecular epidemiology of mcr-1-positive Enterobacteriaceae in patients and healthy adults from China: an epidemiological and clinical study. Lancet Infect Dis 2017;17:390–399 [CrossRef][PubMed]
    [Google Scholar]
  224. Yao X, Doi Y, Zeng L, Lv L, Liu JH. Carbapenem-resistant and colistin-resistant Escherichia coli co-producing NDM-9 and MCR-1. Lancet Infect Dis 2016;16:288–289 [CrossRef][PubMed]
    [Google Scholar]
  225. Shen Z, Wang Y, Shen Y, Shen J, Wu C. Early emergence of mcr-1 in Escherichia coli from food-producing animals. Lancet Infect Dis 2016;16:293 [CrossRef][PubMed]
    [Google Scholar]
  226. Malhotra-Kumar S, Xavier BB, Das AJ, Lammens C, Hoang HT et al. Colistin-resistant Escherichia coli harbouring mcr-1 isolated from food animals in Hanoi, Vietnam. Lancet Infect Dis 2016;16:286–287 [CrossRef][PubMed]
    [Google Scholar]
  227. Wang R, van Dorp L, Shaw LP, Bradley P, Wang Q et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat Commun 2018;9:1179 [CrossRef][PubMed]
    [Google Scholar]
  228. European Medicines Agency European Surveillance of Veterinary Antimicrobial Consumption – Sales of Veterinary Antimicrobial Agents in 30 European Countries in 2015 London: European Medicines Agency; 2017
    [Google Scholar]
  229. Walsh TR, Wu Y. China bans colistin as a feed additive for animals. Lancet Infect Dis 2016;16:1102–1103 [CrossRef][PubMed]
    [Google Scholar]
  230. World Health Organization United Nations meeting on antimicrobial resistance. Bull World Health Organ 2016;94:638–639 [CrossRef][PubMed]
    [Google Scholar]
  231. United Nations General Assembly Political Declaration of the High-level Meeting of the General Assembly on Antimicrobial Resistance New York: United Nations; 2016
    [Google Scholar]
  232. Australian Government DoH, Department of Agriculture Responding to the Threat of Antimicrobial Resistance Canberra: Australian Government; 2015
    [Google Scholar]
  233. European Commission A European One Health Action Plan Against Antimicrobial Resistance (AMR) Brussels: European Commission; 2017
    [Google Scholar]
  234. UK Department of Health UK Five Year Antimicrobial Resistance Strategy 2013-2018 London: UK Department of Health; 2013
    [Google Scholar]
  235. The White House National Strategy for Combating Antibiotic-Resistant Bacteria Washington, DC: The White House; 2014
    [Google Scholar]
  236. Giacobbe DR, Del Bono V, Mikulska M, Gustinetti G, Marchese A et al. Impact of a mixed educational and semi-restrictive antimicrobial stewardship project in a large teaching hospital in Northern Italy. Infection 2017;45:849–856 [CrossRef][PubMed]
    [Google Scholar]
  237. Molina J, Peñalva G, Gil-Navarro MV, Praena J, Lepe JA et al. Long-term impact of an educational antimicrobial stewardship program on hospital-acquired candidemia and multidrug-resistant bloodstream infections: a quasi-experimental study of interrupted time-series analysis. Clin Infect Dis 2017;65:1992–1999 [CrossRef][PubMed]
    [Google Scholar]
  238. Pulcini C, Binda F, Lamkang AS, Trett A, Charani E et al. Developing core elements and checklist items for global hospital antimicrobial stewardship programmes: a consensus approach. Clin Microbiol Infect 2018; [CrossRef][PubMed]
    [Google Scholar]
  239. Robinson TP, Bu DP, Carrique-Mas J, Fèvre EM, Gilbert M et al. Antibiotic resistance is the quintessential One Health issue. Trans R Soc Trop Med Hyg 2016;110:377–380 [CrossRef][PubMed]
    [Google Scholar]
  240. World Health Organization, Food and Agriculture Organization of the United Nations, World Organization for Animal Health Antimicrobial Resistance – A Manual for Developing National Action Plans Geneva: World Health Organization; 2016
    [Google Scholar]
  241. Pouwels KB, Dolk FCK, Smith DRM, Robotham JV, Smieszek T. Actual versus 'ideal' antibiotic prescribing for common conditions in English primary care. J Antimicrob Chemother 2018;73:19–26 [CrossRef][PubMed]
    [Google Scholar]
  242. Fleming-Dutra KE, Hersh AL, Shapiro DJ, Bartoces M, Enns EA et al. Prevalence of inappropriate antibiotic prescriptions among US ambulatory care visits, 2010–2011. JAMA 2016;315:1864–1873 [CrossRef][PubMed]
    [Google Scholar]
  243. Bin Abdulhak AA, Altannir MA, Almansor MA, Almohaya MS, Onazi AS et al. Non prescribed sale of antibiotics in Riyadh, Saudi Arabia: a cross sectional study. BMC Public Health 2011;11:538 [CrossRef][PubMed]
    [Google Scholar]
  244. Kalungia AC, Burger J, Godman B, Costa JO, Simuwelu C. Non-prescription sale and dispensing of antibiotics in community pharmacies in Zambia. Expert Rev Anti Infect Ther 2016;14:1215–1223 [CrossRef][PubMed]
    [Google Scholar]
  245. Kotwani A, Wattal C, Joshi PC, Holloway K. Irrational use of antibiotics and role of the pharmacist: an insight from a qualitative study in New Delhi, India. J Clin Pharm Ther 2012;37:308–312 [CrossRef][PubMed]
    [Google Scholar]
  246. Nga Dott, Chuc NT, Hoa NP, Hoa NQ, Nguyen NT et al. Antibiotic sales in rural and urban pharmacies in northern Vietnam: an observational study. BMC Pharmacol Toxicol 2014;15:6 [CrossRef][PubMed]
    [Google Scholar]
  247. European Centre for Disease Prevention and Control ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food‐producing animals. EFSA J 2017;15:4872
    [Google Scholar]
  248. van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA 2015;112:5649–5654 [CrossRef][PubMed]
    [Google Scholar]
  249. US Food and Drug Administration 2016 Summary Report on Antimicrobials Sold or Distributed of Use in Food-producing Animals Silver Spring, MD: US Food and Drug Administration; 2017
    [Google Scholar]
  250. Mataseje LF, Boyd DA, Delport J, Hoang L, Imperial M et al. Serratia marcescens harbouring SME-type class A carbapenemases in Canada and the presence of bla SME on a novel genomic island, SmarGI1-1. J Antimicrob Chemother 2014;69:1825–1829 [CrossRef][PubMed]
    [Google Scholar]
  251. Hopkins KL, Findlay J, Doumith M, Mather B, Meunier D et al. IMI-2 carbapenemase in a clinical Klebsiella variicola isolated in the UK. J Antimicrob Chemother 2017;72:2129–2131 [CrossRef][PubMed]
    [Google Scholar]
  252. Rojo-Bezares B, Martín C, López M, Torres C, Sáenz Y. First detection of bla IMI-2 gene in a clinical Escherichia coli strain. Antimicrob Agents Chemother 2012;56:1146–1147 [CrossRef][PubMed]
    [Google Scholar]
  253. Rasmussen BA, Bush K, Keeney D, Yang Y, Hare R et al. Characterization of IMI-1 β-lactamase, a class A carbapenem-hydrolyzing enzyme from Enterobacter cloacae. Antimicrob Agents Chemother 1996;40:2080–2086[PubMed]
    [Google Scholar]
  254. Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol 2013;303:298–304 [CrossRef][PubMed]
    [Google Scholar]
  255. Espedido BA, Partridge SR, Iredell JR. bla IMP-4in different genetic contexts in Enterobacteriaceae isolates from Australia. Antimicrob Agents Chemother 2008;52:2984–2987 [CrossRef][PubMed]
    [Google Scholar]
  256. Peleg AY, Franklin C, Bell JM, Spelman DW. Dissemination of the metallo-β-lactamase gene blaIMP-4 among gram-negative pathogens in a clinical setting in Australia. Clin Infect Dis 2005;41:1549–1556 [CrossRef][PubMed]
    [Google Scholar]
  257. Tato M, Coque TM, Baquero F, Cantón R. Dispersal of carbapenemase bla VIM-1 gene associated with different Tn402 variants, mercury transposons, and conjugative plasmids in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2010;54:320–327 [CrossRef][PubMed]
    [Google Scholar]
  258. Loli A, Tzouvelekis LS, Tzelepi E, Carattoli A, Vatopoulos AC et al. Sources of diversity of carbapenem resistance levels in Klebsiella pneumoniae carrying bla VIM-1. J Antimicrob Chemother 2006;58:669–672 [CrossRef][PubMed]
    [Google Scholar]
  259. Luzzaro F, Docquier JD, Colinon C, Endimiani A, Lombardi G et al. Emergence in Klebsiella pneumoniae and Enterobacter cloacae clinical isolates of the VIM-4 metallo-β-lactamase encoded by a conjugative plasmid. Antimicrob Agents Chemother 2004;48:648–650 [CrossRef][PubMed]
    [Google Scholar]
  260. Rieber H, Frontzek A, Pfeifer Y. Emergence of metallo-β-lactamase GIM-1 in a clinical isolate of Serratia marcescens. Antimicrob Agents Chemother 2012;56:4945–4947 [CrossRef][PubMed]
    [Google Scholar]
  261. Sekiguchi J, Morita K, Kitao T, Watanabe N, Okazaki M et al. KHM-1, a novel plasmid-mediated metallo-β-lactamase from a Citrobacter freundii clinical isolate. Antimicrob Agents Chemother 2008;52:4194–4197 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000197
Loading
/content/journal/mgen/10.1099/mgen.0.000197
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error