1887

Abstract

A better understanding of the genomic changes that facilitate the emergence and spread of drug-resistant Mycobacterium tuberculosis strains is currently required. Here, we report the use of the MinION nanopore sequencer (Oxford Nanopore Technologies) to sequence and assemble an extensively drug-resistant (XDR) isolate, which is part of a modern Beijing sub-lineage strain, prevalent in Western Province, Papua New Guinea. Using 238-fold coverage obtained from a single flow-cell, de novo assembly of nanopore reads resulted into one contiguous assembly with 99.92 % assembly accuracy. Incorporation of complementary short read sequences (Illumina) as part of consensus error correction resulted in a 4 404 064 bp genome with 99.98 % assembly accuracy. This assembly had an average nucleotide identity of 99.7 % relative to the reference genome, H37Rv. We assembled nearly all GC-rich repetitive PE/PPE family genes (166/168) and identified variants within these genes. With an estimated genotypic error rate of 5.3 % from MinION data, we demonstrated identification of variants to include the conventional drug resistance mutations, and those that contribute to the resistance phenotype (efflux pumps/transporter) and virulence. Reference-based alignment of the assembly allowed detection of deletions and insertions. MinION sequencing provided a fully annotated assembly of a transmissible XDR strain from an endemic setting and showed its utility to provide further understanding of genomic processes within Mycobacterium tuberculosis.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000188
2018-06-15
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/7/mgen000188.html?itemId=/content/journal/mgen/10.1099/mgen.0.000188&mimeType=html&fmt=ahah

References

  1. WHO Global Tuberculosis Report 2017 Geneva, Switzerland World Health Organization; 2017
    [Google Scholar]
  2. Abubakar I, Zignol M, Falzon D, Raviglione M, Ditiu L et al. Drug-resistant tuberculosis: time for visionary political leadership. Lancet Infect Dis 2013;13:529–539 [CrossRef][PubMed]
    [Google Scholar]
  3. Dheda K, Gumbo T, Maartens G, Dooley KE, Mcnerney R et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir Med 2017;291–360 [CrossRef][PubMed]
    [Google Scholar]
  4. Udwadia ZF. MDR, XDR, TDR tuberculosis: ominous progression. Thorax 2012;67:286–288 [CrossRef][PubMed]
    [Google Scholar]
  5. Zhang Y, Yew WW. Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015. Int J Tuberc Lung Dis 2015;19:1276–1289 [CrossRef][PubMed]
    [Google Scholar]
  6. Eldholm V, Monteserin J, Rieux A, Lopez B, Sobkowiak B et al. Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain. Nat Commun 2015;6:7119 [CrossRef][PubMed]
    [Google Scholar]
  7. Ioerger TR, Feng Y, Chen X, Dobos KM, Victor TC et al. The non-clonality of drug resistance in Beijing-genotype isolates of Mycobacterium tuberculosis from the Western Cape of South Africa. BMC Genomics 2010;11:670 [CrossRef][PubMed]
    [Google Scholar]
  8. Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ. Within-host evolution of bacterial pathogens. Nat Rev Microbiol 2016;14:150–162 [CrossRef][PubMed]
    [Google Scholar]
  9. Cohen KA, Abeel T, Manson McGuire A, Desjardins CA, Munsamy V et al. Evolution of Extensively drug-resistant tuberculosis over four decades: whole genome sequencing and dating analysis of Mycobacterium tuberculosis Isolates from KwaZulu-Natal. PLoS Med 2015;12:e1001880 [CrossRef][PubMed]
    [Google Scholar]
  10. Casali N, Nikolayevskyy V, Balabanova Y, Harris SR, Ignatyeva O et al. Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat Genet 2014;46:279–286 [CrossRef][PubMed]
    [Google Scholar]
  11. Casali N, Nikolayevskyy V, Balabanova Y, Ignatyeva O, Kontsevaya I et al. Microevolution of extensively drug-resistant tuberculosis in Russia. Genome Res 2012;22:735–745 [CrossRef][PubMed]
    [Google Scholar]
  12. Mcbryde ES, Meehan MT, Doan TN, Ragonnet R, Marais BJ et al. The risk of global epidemic replacement with drug-resistant Mycobacterium tuberculosis strains. Int J Infect Dis 2017;56:14–20 [CrossRef][PubMed]
    [Google Scholar]
  13. Marais BJ, Mlambo CK, Rastogi N, Zozio T, Duse AG et al. Epidemic spread of multidrug-resistant tuberculosis in Johannesburg, South Africa. J Clin Microbiol 2013;51:1818–1825 [CrossRef][PubMed]
    [Google Scholar]
  14. Schmalstieg AM, Srivastava S, Belkaya S, Deshpande D, Meek C et al. The antibiotic resistance arrow of time: efflux pump induction is a general first step in the evolution of mycobacterial drug resistance. Antimicrob Agents Chemother 2012;56:4806–4815 [CrossRef][PubMed]
    [Google Scholar]
  15. Garima K, Pathak R, Tandon R, Rathor N, Sinha R et al. Differential expression of efflux pump genes of Mycobacterium tuberculosis in response to varied subinhibitory concentrations of antituberculosis agents. Tuberculosis 2015;95:155–161 [CrossRef][PubMed]
    [Google Scholar]
  16. Ali A, Hasan Z, McNerney R, Mallard K, Hill-Cawthorne G et al. Whole genome sequencing based characterization of extensively drug-resistant Mycobacterium tuberculosis isolates from Pakistan. PLoS One 2015;10:e0117771 [CrossRef][PubMed]
    [Google Scholar]
  17. Didelot X, Bowden R, Wilson DJ, Peto TEA, Crook DW. Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet 2012;13:601–612 [CrossRef][PubMed]
    [Google Scholar]
  18. Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol 2015;33:296–300 [CrossRef][PubMed]
    [Google Scholar]
  19. Laver T, Harrison J, O'Neill PA, Moore K, Farbos A et al. Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol Detect Quantif 2015;3:1–8 [CrossRef][PubMed]
    [Google Scholar]
  20. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 2016;530:228–232 [CrossRef]
    [Google Scholar]
  21. Votintseva AA, Bradley P, Pankhurst L, del Ojo Elias C, Loose M et al. Same-day diagnostic and surveillance data for tuberculosis via whole-genome sequencing of direct respiratory samples. J Clin Microbiol 2017;55:1285–1298 [CrossRef][PubMed]
    [Google Scholar]
  22. Aia P, Kal M, Lavu E, John LN, Johnson K et al. The burden of drug-resistant tuberculosis in Papua New Guinea: results of a large population-based survey. PLoS One 2016;11:e0149806 [CrossRef][PubMed]
    [Google Scholar]
  23. Bainomugisa A, Lavu E, Hiashiri S, Majumdar S, Honjepari A et al. Multi-clonal evolution of multi-drug-resistant/extensively drug-resistant Mycobacterium tuberculosis in a high-prevalence setting of Papua New Guinea for over three decades. Microb Genom 2018; [CrossRef][PubMed]
    [Google Scholar]
  24. Fishbein S, van Wyk N, Warren RM, Sampson SL. Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity. Mol Microbiol 2015;96:901–916 [CrossRef][PubMed]
    [Google Scholar]
  25. Sampson SL. Mycobacterial PE/PPE proteins at the host-pathogen interface. Clin Dev Immunol 2011;2011:1–11 [CrossRef][PubMed]
    [Google Scholar]
  26. Merker M, Blin C, Mona S, Duforet-Frebourg N, Lecher S et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet 2015;47:242–249 [CrossRef][PubMed]
    [Google Scholar]
  27. Phelan JE, Coll F, Bergval I, Anthony RM, Warren R et al. Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages. BMC Genomics 2016;17:151 [CrossRef][PubMed]
    [Google Scholar]
  28. Namouchi A, Karboul A, Fabre M, Gutierrez MC, Mardassi H. Evolution of smooth tubercle Bacilli PE and PE_PGRS genes: evidence for a prominent role of recombination and imprint of positive selection. PLoS One 2013;8:e64718 [CrossRef][PubMed]
    [Google Scholar]
  29. Jia X, Yang L, Dong M, Chen S, Lv L et al. The bioinformatics analysis of comparative genomics of Mycobacterium tuberculosis complex (MTBC) provides insight into dissimilarities between intraspecific groups differing in host association, virulence, and epitope diversity. Front Cell Infect Microbiol 2017;7:88 [CrossRef][PubMed]
    [Google Scholar]
  30. Elghraoui A, Modlin SJ, Valafar F. SMRT genome assembly corrects reference errors, resolving the genetic basis of virulence in Mycobacterium tuberculosis. BMC Genomics 2017;18:302 [CrossRef][PubMed]
    [Google Scholar]
  31. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017;27:722–736 [CrossRef][PubMed]
    [Google Scholar]
  32. Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 2015;12:733–735 [CrossRef][PubMed]
    [Google Scholar]
  33. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009;25:2078–2079 [CrossRef][PubMed]
    [Google Scholar]
  34. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014;9:e112963 [CrossRef][PubMed]
    [Google Scholar]
  35. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25:1043–1055 [CrossRef][PubMed]
    [Google Scholar]
  36. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  37. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004;5:R12 [CrossRef][PubMed]
    [Google Scholar]
  38. Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA et al. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol 2015;16:294 [CrossRef][PubMed]
    [Google Scholar]
  39. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  40. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D et al. Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. OMICS 2008;12:137–141 [CrossRef][PubMed]
    [Google Scholar]
  41. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R et al. Circos: an information aesthetic for comparative genomics. Genome Res 2009;19:1639–1645 [CrossRef][PubMed]
    [Google Scholar]
  42. Kapopoulou A, Lew JM, Cole ST. The MycoBrowser portal: a comprehensive and manually annotated resource for mycobacterial genomes. Tuberculosis 2011;91:8–13 [CrossRef][PubMed]
    [Google Scholar]
  43. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297–1303 [CrossRef][PubMed]
    [Google Scholar]
  44. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013;arXiv:1303.3997v1
  45. Guerra-Assunção JA, Crampin AC, Houben RM, Mzembe T, Mallard K et al. Large-scale whole genome sequencing of M. tuberculosis provides insights into transmission in a high prevalence area. Elife 2015;4: [CrossRef][PubMed]
    [Google Scholar]
  46. Wada T, Hijikata M, Maeda S, Hang NTL, Thuong PH et al. Complete genome sequences of three representative Mycobacterium tuberculosis Beijing family strains belonging to Distinct genotype clusters in Hanoi, Vietnam, during 2007 to 2009. Genome Announc 2017;5:e00510-17 [CrossRef][PubMed]
    [Google Scholar]
  47. Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat Methods 2018; [CrossRef][PubMed]
    [Google Scholar]
  48. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015;10:845–858 [CrossRef][PubMed]
    [Google Scholar]
  49. Cingolani P, Platts A, Wang L, Coon M, Nguyen T et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012;6:80–92 [CrossRef][PubMed]
    [Google Scholar]
  50. Tsolaki AG, Gagneux S, Pym AS, Goguet de La Salmoniere YO, Kreiswirth BN et al. Genomic deletions classify the Beijing/W strains as a distinct genetic lineage of Mycobacterium tuberculosis. J Clin Microbiol 2005;43:3185–3191 [CrossRef][PubMed]
    [Google Scholar]
  51. Periwal V, Patowary A, Vellarikkal SK, Gupta A, Singh M et al. Comparative whole-genome analysis of clinical isolates reveals characteristic architecture of Mycobacterium tuberculosis pangenome. PLoS One 2015;10:e0122979 [CrossRef][PubMed]
    [Google Scholar]
  52. O'Toole RF, Gautam SS. Limitations of the Mycobacterium tuberculosis reference genome H37Rv in the detection of virulence-related loci. Genomics 2017;109:471–474 [CrossRef][PubMed]
    [Google Scholar]
  53. Gautam SS, Mac Aogáin M, Bower JE, Basu I, O'Toole RF. Differential carriage of virulence-associated loci in the New Zealand Rangipo outbreak strain of Mycobacterium tuberculosis. Infect Dis 2017;49:680–688 [CrossRef][PubMed]
    [Google Scholar]
  54. Giordano F, Aigrain L, Quail MA, Coupland P, Bonfield JK et al. De novo yeast genome assemblies from MinION, PacBio and MiSeq platforms. Sci Rep 2017;7:3935 [CrossRef][PubMed]
    [Google Scholar]
  55. Jain M, Koren S, Miga KH, Quick J, Rand AC et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 2018;36:338–345 [CrossRef][PubMed]
    [Google Scholar]
  56. Rodríguez JG, Pino C, Tauch A, Murcia MI. Complete genome sequence of the clinical Beijing-like strain Mycobacterium tuberculosis 323 using the PacBio Real-Time sequencing platform. Genome Announc 2015;3:e00371-15 [CrossRef][PubMed]
    [Google Scholar]
  57. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 2016;530:228–232 [CrossRef][PubMed]
    [Google Scholar]
  58. Copin R, Coscollá M, Seiffert SN, Bothamley G, Sutherland J et al. Sequence diversity in the pe_pgrs genes of Mycobacterium tuberculosis is independent of human T cell recognition. MBio 2014;5:e00960-13 [CrossRef][PubMed]
    [Google Scholar]
  59. McEvoy CR, Cloete R, Müller B, Schürch AC, van Helden PD et al. Comparative analysis of Mycobacterium tuberculosis pe and ppe genes reveals high sequence variation and an apparent absence of selective constraints. PLoS One 2012;7:e30593 [CrossRef][PubMed]
    [Google Scholar]
  60. Brodin P, Poquet Y, Levillain F, Peguillet I, Larrouy-Maumus G et al. High content phenotypic cell-based visual screen identifies Mycobacterium tuberculosis acyltrehalose-containing glycolipids involved in phagosome remodeling. PLoS Pathog 2010;6:e1001100 [CrossRef][PubMed]
    [Google Scholar]
  61. Cui ZJ, Yang QY, Zhang HY, Zhu Q, Zhang QY. Bioinformatics identification of drug resistance-associated gene pairs in Mycobacterium tuberculosis. Int J Mol Sci 2016;17:1417 [CrossRef][PubMed]
    [Google Scholar]
  62. Gagneux S, Small PM. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 2007;7:328–337 [CrossRef][PubMed]
    [Google Scholar]
  63. Liu J, Takiff HE, Nikaido H. Active efflux of fluoroquinolones in Mycobacterium smegmatis mediated by LfrA, a multidrug efflux pump. J Bacteriol 1996;178:3791–3795 [CrossRef][PubMed]
    [Google Scholar]
  64. De Rossi E, Arrigo P, Bellinzoni M, Silva PA, Martín C et al. The multidrug transporters belonging to major facilitator superfamily in Mycobacterium tuberculosis. Mol Med 2002;8:714–724[PubMed]
    [Google Scholar]
  65. Mitsuhashi S, Kryukov K, Nakagawa S, Takeuchi JS, Shiraishi Y et al. A portable system for rapid bacterial composition analysis using a nanopore-based sequencer and laptop computer. Sci Rep 2017;7:5657 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000188
Loading
/content/journal/mgen/10.1099/mgen.0.000188
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error