Bordetella pertussis population dynamics and phylogeny in Japan after adoption of acellular pertussis vaccines Open Access

Abstract

Bordetella pertussis, the causative agent of whooping cough, has experienced a resurgence in the past 15 years, despite the existence of both whole-cell and acellular vaccines. Here, we performed whole genome sequencing analysis of 149 clinical strains, provided by the National Institute of Infectious Diseases (NIID), Japan, isolated in 1982–2014, after Japan became the first country to adopt acellular vaccines against B. pertussis. Additionally, we sequenced 39 strains provided by the Konan Kosei Hospital in Aichi prefecture, Japan, isolated in 2008–2013. The genome sequences afforded insight into B. pertussis genome variability and population dynamics in Japan, and revealed that the B. pertussis population in Japan was characterized by two major clades that divided more than 40 years ago. The pertactin gene was disrupted in about 20 % of the 149 NIID isolates, by either a deletion within the signal sequence (ΔSS) or the insertion of IS element IS481 (prn :: IS481). Phylogeny suggests that the parent clones for these isolates originated in Japan. Divergence dating traced the first generation of the pertactin-deficient mutants in Japan to around 1990, and indicated that strains containing the alternative pertactin allele prn2 may have appeared in Japan around 1974. Molecular clock data suggested that observed fluctuations in B. pertussis population size may have coincided with changes in vaccine usage in the country. The continuing failure to eradicate the disease warrants an exploration of novel vaccine compositions.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000180
2018-05-17
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/5/mgen000180.html?itemId=/content/journal/mgen/10.1099/mgen.0.000180&mimeType=html&fmt=ahah

References

  1. CDC 2015; Epidemiology and Prevention of Vaccine-Preventable Diseases. www.cdc.gov/vaccines/pubs/pinkbook/pert.html#vaccines accessed 10/03/2016
  2. Watanabe M, Nagai M. Acellular pertussis vaccines in Japan: past, present and future. Expert Rev Vaccines 2005; 4:173–184 [View Article]
    [Google Scholar]
  3. Sato Y, Kimura M, Fukumi H. Development of a pertussis component vaccine in Japan. Lancet 1984; 323:122–126 [View Article]
    [Google Scholar]
  4. Kato T. Pertussis vaccine in Japan. J Infect Chemother 1999; 5:185–189 [View Article]
    [Google Scholar]
  5. Kuno-Sakai H, Kimura M. Safety and efficacy of acellular pertussis vaccine in Japan, evaluated by 23 years of its use for routine immunization. Pediatrics International 2004; 46:650–655 [View Article]
    [Google Scholar]
  6. Sato Y, Sato H. Development of acellular pertussis vaccines. Biologicals 1999; 27:61–69 [View Article]
    [Google Scholar]
  7. Hara M, Fukuoka M, Tashiro K, Ozaki I, Ohfuji S et al. Pertussis outbreak in university students and evaluation of acellular pertussis vaccine effectiveness in Japan. BMC Infect Dis 2015; 15:45 [View Article]
    [Google Scholar]
  8. Horiba K, Nishimura N, Gotoh K, Kawaguchi M, Takeuchi S et al. Clinical manifestations of children with microbiologically confirmed pertussis infection and antimicrobial susceptibility of isolated strains in a regional hospital in Japan, 2008–2012. Jpn J Infect Dis 2014; 67:345–348 [View Article]
    [Google Scholar]
  9. Mooi FR, van der Maas NAT, de Melker HE. Pertussis resurgence: waning immunity and pathogen adaptation – two sides of the same coin. Epidemiol Infect 2014; 142:685–694 [View Article]
    [Google Scholar]
  10. Sheridan SL, Frith K, Snelling TL, Grimwood K, McIntyre PB et al. Waning vaccine immunity in teenagers primed with whole cell and acellular pertussis vaccine: recent epidemiology. Expert Rev Vaccines 2014; 13:1081–1106 [View Article]
    [Google Scholar]
  11. Klein NP, Bartlett J, Fireman B, Aukes L, Buck PO et al. Waning protection following 5 doses of a 3-component diphtheria, tetanus, and acellular pertussis vaccine. Vaccine 2017; 35:3395–3400 [View Article]
    [Google Scholar]
  12. He Q, Mertsola J. Factors contributing to pertussis resurgence. Future Microbiol 2008; 3:329–339 [View Article]
    [Google Scholar]
  13. Warfel JM, Zimmerman LI, Merkel TJ. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc Natl Acad Sci USA 2014; 111:787–792 [View Article]
    [Google Scholar]
  14. Warfel JM, Zimmerman LI, Merkel TJ. Comparison of three whole-cell pertussis vaccines in the baboon model of pertussis. Clin Vaccine Immunol 2016; 23:47–54 [View Article]
    [Google Scholar]
  15. Mooi FR, He Q, van Oirschot H, Mertsola J. Variation in the Bordetella pertussis virulence factors pertussis toxin and pertactin in vaccine strains and clinical isolates in Finland. Infect Immun 1999; 67:3133–3134
    [Google Scholar]
  16. Bart MJ, Harris SR, Advani A, Arakawa Y, Bottero D et al. Global population structure and evolution of Bordetella pertussis and their relationship with vaccination. MBio 2014; 5:e01074 [View Article]
    [Google Scholar]
  17. Mooi FR, van Oirschot H, Heuvelman K, van der Heide HG, Gaastra W et al. Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in The Netherlands: temporal trends and evidence for vaccine-driven evolution. Infect Immun 1998; 66:670–675
    [Google Scholar]
  18. Mooi FR, van Loo IHM, van Gent M, He Q, Bart MJ et al. Bordetella pertussis strains with increased toxin production associated with pertussis resurgence. Emerg Infect Dis 2009; 15:1206–1213 [View Article]
    [Google Scholar]
  19. Loconsole D, de Robertis AL, Morea A, Metallo A, Lopalco PL et al. Resurgence of pertussis and emergence of the Ptxp3 toxin promoter allele in South Italy. Pediatr Infect Dis J 2018; 37:1 [View Article][PubMed]
    [Google Scholar]
  20. Octavia S, Sintchenko V, Gilbert GL, Lawrence A, Keil AD et al. Newly emerging clones of Bordetella pertussis carrying prn2 and ptxP3 alleles implicated in Australian pertussis epidemic in 2008–2010. J Infect Dis 2012; 205:1220–1224 [View Article]
    [Google Scholar]
  21. Pawloski LC, Queenan AM, Cassiday PK, Lynch AS, Harrison MJ et al. Prevalence and molecular characterization of pertactin-deficient Bordetella pertussis in the United States. Clin Vaccine Immunol 2014; 21:119–125 [View Article]
    [Google Scholar]
  22. Shuel M, Jamieson FB, Tang P, Brown S, Farrell D et al. Genetic analysis of Bordetella pertussis in Ontario, Canada reveals one predominant clone. Int J Infect Dis 2013; 17:e413e417 [View Article][PubMed]
    [Google Scholar]
  23. Kodama A, Kamachi K, Horiuchi Y, Konda T, Arakawa Y. Antigenic divergence suggested by correlation between antigenic variation and pulsed-field gel electrophoresis profiles of Bordetella pertussis isolates in Japan. J Clin Microbiol 2004; 42:5453–5457 [View Article]
    [Google Scholar]
  24. Schmidtke AJ, Boney KO, Martin SW, Skoff TH, Tondella ML et al. Population diversity among Bordetella pertussis isolates, United States, 1935–2009. Emerg Infect Dis 2012; 18:1248–1255 [View Article]
    [Google Scholar]
  25. Sealey KL, Harris SR, Fry NK, Hurst LD, Gorringe AR et al. Genomic analysis of isolates from the United Kingdom 2012 pertussis outbreak reveals that vaccine antigen genes are unusually fast evolving. J Infect Dis 2015; 212:294–301 [View Article]
    [Google Scholar]
  26. van Gent M, Bart MJ, van der Heide HGJ, Heuvelman KJ, Mooi FR. Small mutations in Bordetella pertussis are associated with selective sweeps. PLoS One 2012; 7:e46407 [View Article]
    [Google Scholar]
  27. Wagner B, Melzer H, Freymüller G, Stumvoll S, Rendi-Wagner P et al. Genetic variation of Bordetella pertussis in Austria. PLoS One 2015; 10:e0132623 [View Article]
    [Google Scholar]
  28. Barkoff A-M, Mertsola J, Guillot S, Guiso N, Berbers G et al. Appearance of Bordetella pertussis strains not expressing the vaccine antigen pertactin in Finland. Clin Vaccine Immunol 2012; 19:1703–1704 [View Article]
    [Google Scholar]
  29. Hegerle N, Paris A-S, Brun D, Dore G, Njamkepo E et al. Evolution of French Bordetella pertussis and Bordetella parapertussis isolates: increase of Bordetellae not expressing pertactin. Clin Microbiol Infect 2012; 18:E340E346 [View Article]
    [Google Scholar]
  30. Queenan AM, Cassiday PK, Evangelista A. Pertactin-negative variants of Bordetella pertussis in the United States. N Engl J Med Overseas Ed 2013; 368:583–584 [View Article]
    [Google Scholar]
  31. Bowden KE, Williams MM, Cassiday PK, Milton A, Pawloski L et al. Molecular epidemiology of the pertussis epidemic in Washington State in 2012. J Clin Microbiol 2014; 52:3549–3557 [View Article]
    [Google Scholar]
  32. Lam C, Octavia S, Ricafort L, Sintchenko V, Gilbert GL et al. Rapid increase in pertactin-deficient Bordetella pertussis isolates, Australia. Emerg Infect Dis 2014; 20:626–633 [View Article]
    [Google Scholar]
  33. Martin SW, Pawloski L, Williams M, Weening K, Debolt C et al. Pertactin-negative Bordetella pertussis strains: evidence for a possible selective advantage. Clin Infect Dis 2015; 60:223–227 [View Article]
    [Google Scholar]
  34. Quinlan T, Musser KA, Currenti SA, Zansky SM, Halse TA. Pertactin-negative variants of Bordetella pertussis in New York State: a retrospective analysis, 2004–2013. Mol Cell Probes 2014; 28:138–140 [View Article]
    [Google Scholar]
  35. Zeddeman A, van Gent M, Heuvelman CJ, van der Heide HG, Bart MJ et al. Investigations into the emergence of pertactin-deficient Bordetella pertussis isolates in six European countries, 1996 to 2012. Euro Surveill 2014; 19:20881 [View Article][PubMed]
    [Google Scholar]
  36. Miyaji Y, Otsuka N, Toyoizumi-Ajisaka H, Shibayama K, Kamachi K. Genetic analysis of Bordetella pertussis isolates from the 2008–2010 pertussis epidemic in Japan. PLoS One 2013; 8:e77165 [View Article]
    [Google Scholar]
  37. Otsuka N, Han H-J, Toyoizumi-Ajisaka H, Nakamura Y, Arakawa Y et al. Prevalence and genetic characterization of pertactin-deficient Bordetella pertussis in Japan. PLoS One 2012; 7:e31985 [View Article]
    [Google Scholar]
  38. Bodilis H, Guiso N. Virulence of pertactin-negative Bordetella pertussis isolates from infants, France. Emerg Infect Dis 2013; 19:471–474 [View Article]
    [Google Scholar]
  39. Clarke M, Mcintyre PB, Blyth CC, Wood N, Octavia S et al. The relationship between Bordetella pertussis genotype and clinical severity in Australian children with pertussis. J Infect 2016; 72:171–178 [View Article]
    [Google Scholar]
  40. Hegerle N, Dore G, Guiso N. Pertactin deficient Bordetella pertussis present a better fitness in mice immunized with an acellular pertussis vaccine. Vaccine 2014; 32:6597–6600 [View Article]
    [Google Scholar]
  41. Safarchi A, Octavia S, Luu LDW, Tay CY, Sintchenko V et al. Pertactin negative Bordetella pertussis demonstrates higher fitness under vaccine selection pressure in a mixed infection model. Vaccine 2015; 33:6277–6281 [View Article]
    [Google Scholar]
  42. Hiramatsu Y, Miyaji Y, Otsuka N, Arakawa Y, Shibayama K et al. Significant decrease in pertactin-deficient Bordetella pertussis isolates, Japan. Emerg Infect Dis 2017; 23:699–701 [View Article]
    [Google Scholar]
  43. Safarchi A, Octavia S, Wu SZ, Kaur S, Sintchenko V et al. Genomic dissection of Australian Bordetella pertussis isolates from the 2008–2012 epidemic. J Infect 2016; 72:468–477 [View Article]
    [Google Scholar]
  44. Xu Y, Liu B, Gröndahl-Yli-Hannuksila K, Tan Y, Feng L et al. Whole-genome sequencing reveals the effect of vaccination on the evolution of Bordetella pertussis . Sci Rep 2015; 5:12888 [View Article]
    [Google Scholar]
  45. Bowden KE, Weigand MR, Peng Y, Cassiday PK, Sammons S et al. Genome structural diversity among 31 Bordetella pertussis isolates from two recent U.S. whooping cough statewide epidemics. mSphere 2016; 1:e00036-16 [View Article]
    [Google Scholar]
  46. Seemann T. 2015; Snippy: fast bacterial variant calling from NGS reads. https://github.com/tseemann/snippy accessed 20 September, 2017
  47. Weigand MR, Peng Y, Loparev V, Batra D, Bowden KE et al. The history of Bordetella pertussis genome evolution includes structural rearrangement. J Bacteriol 2017; 199:e00806-1616 [View Article]
    [Google Scholar]
  48. Bart MJ, van der Heide HGJ, Zeddeman A, Heuvelman K, van Gent M et al. Complete genome sequences of 11 Bordetella pertussis strains representing the pandemic ptxP3 lineage. Genome Announc 2015; 3:e01394-15 [View Article]
    [Google Scholar]
  49. Bart MJ, Zeddeman A, van der Heide HGJ, Heuvelman K, van Gent M et al. Complete genome sequences of Bordetella pertussis isolates B1917 and B1920, representing two predominant global lineages. Genome Announc 2014; 2:e01301-14 [View Article]
    [Google Scholar]
  50. Park J, Zhang Y, Buboltz AM, Zhang X, Schuster SC et al. Comparative genomics of the classical Bordetella subspecies: the evolution and exchange of virulence-associated diversity amongst closely related pathogens. BMC Genomics 2012; 13:545 [View Article]
    [Google Scholar]
  51. Park J, Chen C, Harvill ET, Dudley EG, Zhang Y. Diversity of secretion systems associated with virulence characteristics of the classical bordetellae. Microbiology 2015; 161:2328–2340 [View Article]
    [Google Scholar]
  52. Gates I, DuVall M, Ju H, Tondella ML, Pawloski L et al. Development of a qualitative assay for screening of Bordetella pertussis isolates for pertussis toxin production. PLoS One 2017; 12:e0175326 [View Article][PubMed]
    [Google Scholar]
  53. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article][PubMed]
    [Google Scholar]
  54. Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica . Nat Genet 2003; 35:32–40 [View Article]
    [Google Scholar]
  55. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [View Article]
    [Google Scholar]
  56. Chan W-F, Maharjan RP, Reeves PR, Sintchenko V, Gilbert GL et al. Rapid and accurate typing of Bordetella pertussis targeting genes encoding acellular vaccine antigens using real time PCR and High Resolution Melt analysis. J Microbiol Methods 2009; 77:326–329 [View Article]
    [Google Scholar]
  57. Muyldermans G, Pierard D, Hoebrekx N, Advani R, van Amersfoorth S et al. Simple algorithm for identification of Bordetella pertussis pertactin gene variants. J Clin Microbiol 2004; 42:1614–1619 [View Article]
    [Google Scholar]
  58. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 2014; 15:524 [View Article]
    [Google Scholar]
  59. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007; 7:214 [View Article]
    [Google Scholar]
  60. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article]
    [Google Scholar]
  61. Tizolova A, Guiso N, Guillot S. Insertion sequences shared by Bordetella species and implications for the biological diagnosis of pertussis syndrome. Eur J Clin Microbiol Infect Dis 2013; 32:89–96 [View Article][PubMed]
    [Google Scholar]
  62. Fry NK, Neal S, Harrison TG, Miller E, Matthews R et al. Genotypic variation in the Bordetella pertussis virulence factors pertactin and pertussis toxin in historical and recent clinical isolates in the United Kingdom. Infect Immun 2001; 69:5520–5528 [View Article]
    [Google Scholar]
  63. du Q, Wang X, Liu Y, Luan Y, Zhang J et al. Direct molecular typing of Bordetella pertussis from nasopharyngeal specimens in China in 2012–2013. Eur J Clin Microbiol Infect Dis 2016; 35:1211–1214 [View Article][PubMed]
    [Google Scholar]
  64. Galit SR, Otsuka N, Furuse Y, Almonia DJ, Sombrero LT et al. Molecular epidemiology of Bordetella pertussis in the Philippines in 2012–2014. Int J Infect Dis 2015; 35:24–26 [View Article][PubMed]
    [Google Scholar]
  65. Komatsu E, Yamaguchi F, Abe A, Weiss AA, Watanabe M. Synergic effect of genotype changes in pertussis toxin and pertactin on adaptation to an acellular pertussis vaccine in the murine intranasal challenge model. Clin Vaccine Immunol 2010; 17:807–812 [View Article][PubMed]
    [Google Scholar]
  66. Caro V, Elomaa A, Brun D, Mertsola J, He Q et al. Bordetella pertussis , Finland and France. Emerg Infect Dis 2006; 12:987–989 [View Article]
    [Google Scholar]
  67. Weber C, Boursaux-Eude C, Coralie G, Caro V, Guiso N. Polymorphism of Bordetella pertussis isolates circulating for the last 10 years in France, where a single effective whole-cell vaccine has been used for more than 30 years. J Clin Microbiol 2001; 39:4396–4403 [View Article][PubMed]
    [Google Scholar]
  68. Poynten M, Mcintyre PB, Mooi FR, Heuvelman KJ, Gilbert GL. Temporal trends in circulating Bordetella pertussis strains in Australia. Epidemiol Infect 1999; 132:185–193 [View Article]
    [Google Scholar]
  69. Breakwell L, Kelso P, Finley C, Schoenfeld S, Goode B et al. Pertussis vaccine effectiveness in the setting of pertactin-deficient pertussis. Pediatrics 2016; 137:5 [View Article]
    [Google Scholar]
  70. Vodzak J, Queenan AM, Souder E, Evangelista AT, Long SS. Clinical manifestations and molecular characterization of pertactin-deficient and pertactin-producing Bordetella pertussis in children, Philadelphia 2007–2014. Clin Infect Dis 2017; 64:60–66 [View Article][PubMed]
    [Google Scholar]
  71. Shuel M, Lefebvre B, Whyte K, Hayden K, de Serres G et al. Antigenic and genetic characterization of Bordetella pertussis recovered from Quebec, Canada, 2002–2014: detection of a genetic shift. Can J Microbiol 2016; 62:437–441 [View Article]
    [Google Scholar]
  72. Weigand MR, Peng Y, Cassiday PK, Loparev VN, Johnson T et al. Complete genome sequences of Bordetella pertussis isolates with novel pertactin-deficient deletions. Genome Announc 2017; 5:e00973-17 [View Article]
    [Google Scholar]
  73. Litt DJ, Neal SE, Fry NK. Changes in genetic diversity of the Bordetella pertussis population in the United Kingdom between 1920 and 2006 reflect vaccination coverage and emergence of a single dominant clonal type. J Clin Microbiol 2009; 47:680–688 [View Article]
    [Google Scholar]
  74. Brickman TJ, Anderson MT, Armstrong SK. Bordetella iron transport and virulence. Biometals 2007; 20:303–322 [View Article]
    [Google Scholar]
  75. Barnes MG, Weiss AA. BrkA protein of Bordetella pertussis inhibits the classical pathway of complement after C1 deposition. Infect Immun 2001; 69:3067–3072 [View Article]
    [Google Scholar]
  76. Yen MR, Peabody CR, Partovi SM, Zhai Y, Tseng YH et al. Protein-translocating outer membrane porins of Gram-negative bacteria. Biochim Biophys Acta 2002; 1562:6–31 [View Article][PubMed]
    [Google Scholar]
  77. Noble GR, Bernier RH, Esber EC, Hardegree MC, Hinman AR et al. Acellular and whole-cell pertussis vaccines in Japan. Report of a visit by US scientists. JAMA 1987; 257:1351–1356
    [Google Scholar]
  78. Nakayama T. Vaccine chronicle in Japan. J Infect Chemother 2013; 19:787–798 [View Article][PubMed]
    [Google Scholar]
  79. Infectious Disease Surveillance Center, Japan 1997; Infectious Agents Surveillance Report: Pertussis, Japan, 1982–1996. http://idsc.nih.go.jp/iasr/18/207/tpc207.html accessed 02/27/2017
  80. van Loo IHM, Mooi FR. Changes in the Dutch Bordetella pertussis population in the first 20 years after the introduction of whole-cell vaccines. Microbiology 2002; 148:2011–2018 [View Article]
    [Google Scholar]
  81. van Loo IHM, van der Heide HGJ, Nagelkerke NJD, Verhoef J, Mooi FR. Temporal trends in the population structure of Bordetella pertussis during 1949–1996 in a highly vaccinated population. J Infect Dis 1999; 179:915–923 [View Article]
    [Google Scholar]
  82. Infectious Disease Surveillance Center, Japan 2008; Infectious Agents Surveillance Report: Pertussis, Japan, 2005–2007. http://idsc.nih.go.jp/iasr/29/337/tpc337.html accessed 02/27/2017
  83. National Institute of Infectious Diseases, Japan 2015; NESID Annual Surveillance Data Sentinel-Reporting Diseaes 2014-2. www.nih.go.jp/niid/en/survei/2085-idwr/ydata/6054-report-eb2014-2.html accessed 02/27/2017
  84. National Institute of Infectious Diseases, Japan Pertussis, Japan, 2008-2011. Infectious Agents Surveillance Report 2012. p. 321-332. www.niid.go.jp/niid/en/iasren/865-iasr/3027-tpc394.html accessed 02/27/2017
  85. van Twillert I, Bonačić Marinović AA, Kuipers B, van Gaans-van den Brink JAM, Sanders EAM et al. Impact of age and vaccination history on long-term serological responses after symptomatic B. pertussis infection, a high dimensional data analysis. Sci Rep 2017; 7:40328 [View Article]
    [Google Scholar]
  86. Dorji D, Mooi F, Yantorno O, Deora R, Graham RM et al. Bordetella pertussis virulence factors in the continuing evolution of whooping cough vaccines for improved performance. Med Microbiol Immunol 2018; 207: [View Article][PubMed]
    [Google Scholar]
  87. Geurtsen J, Fae KC, van den Dobbelsteen GPJM. Importance of (antibody-dependent) complement-mediated serum killing in protection against Bordetella pertussis . Expert Rev Vaccines 2014; 13:1229–1240 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000180
Loading
/content/journal/mgen/10.1099/mgen.0.000180
Loading

Data & Media loading...

Supplements

Supplementary File 1

Most cited Most Cited RSS feed