1887

Abstract

Serratia grimesii BXF1 is a bacterium with the ability to modulate the development of several eukaryotic hosts. Strain BXF1 was isolated from the pinewood nematode, Bursaphelenchus xylophilus, the causative agent of pine wilt disease affecting pine forests worldwide. This bacterium potentiates Bursaphelenchus xylophilus reproduction, acts as a beneficial pine endophyte, and possesses fungal and bacterial antagonistic activities, further indicating a complex role in a wide range of trophic relationships. In this work, we describe and analyse the genome sequence of strain BXF1, and discuss several important aspects of its ecological role. Genome analysis indicates the presence of several genes related to the observed production of antagonistic traits, plant growth regulation and the modulation of nematode development. Moreover, most of the BXF1 genes are involved in environmental and genetic information processing, which is consistent with its ability to sense and colonize several niches. The results obtained in this study provide the basis to a better understanding of the role and evolution of strain BXF1 as a mediator of interactions between organisms involved in a complex disease system. These results may also bring new insights into general Serratia and Enterobacteriaceae evolution towards multitrophic interactions.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000178
2018-05-21
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/7/mgen000178.html?itemId=/content/journal/mgen/10.1099/mgen.0.000178&mimeType=html&fmt=ahah

References

  1. Grimont F, Grimont PAD. The genus Serratia . In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E et al. (editors) Prokaryotes vol. 6 Proteobacteria Gamma Subclass New York: Springer; 2006 pp. 219–244
    [Google Scholar]
  2. Petersen LM, Tisa LS. Friend or foe? A review of the mechanisms that drive Serratia towards diverse lifestyles. Can J Microbiol 2013; 59:627–640 [View Article]
    [Google Scholar]
  3. Mahlen SD. Serratia infections: from military experiments to current practice. Clin Microbiol Rev 2011; 24:755–791 [View Article][PubMed]
    [Google Scholar]
  4. Proença DN, Francisco R, Santos CV, Lopes A, Fonseca L et al. Diversity of bacteria associated with Bursaphelenchus xylophilus and other nematodes isolated from Pinus pinaster trees with pine wilt disease. PLoS One 2010; 5:e15191 [View Article][PubMed]
    [Google Scholar]
  5. Vicente CSL, Nascimento F, Espada M, Mota M, Oliveira S. Bacteria associated with the pinewood nematode Bursaphelenchus xylophilus collected in Portugal. Antonie van Leeuwenhoek 2011; 100:477–481 [View Article]
    [Google Scholar]
  6. Vicente CSL, Nascimento FX, Espada M, Barbosa P, Hasegawa K et al. Characterization of bacterial communities associated with the pine sawyer beetle Monochamus galloprovincialis, the insect vector of the pinewood nematode Bursaphelenchus xylophilus . FEMS Microbiol Lett 2013; 347:130–139
    [Google Scholar]
  7. Vicente CS, Nascimento F, Espada M, Barbosa P, Mota M et al. Characterization of bacteria associated with pinewood nematode Bursaphelenchus xylophilus . PLoS One 2012; 7:e46661 [View Article][PubMed]
    [Google Scholar]
  8. Vicente CSL, Ikuyo Y, Mota M, Hasegawa K. Pinewood nematode-associated bacteria contribute to oxidative stress resistance of Bursaphelenchus xylophilus . BMC Microbiol 2013; 13:299 [View Article]
    [Google Scholar]
  9. Paiva G, Proença DN, Francisco R, Verissimo P, Santos SS et al. Nematicidal bacteria associated to pinewood nematode produce extracellular proteases. PLoS One 2013; 8:e79705 [View Article][PubMed]
    [Google Scholar]
  10. Nascimento FX, Espada M, Barbosa P, Rossi MJ, Vicente CSL et al. Non-specific transient mutualism between the plant parasitic nematode, Bursaphelenchus xylophilus, and the opportunistic bacterium Serratia quinivorans BXF1, a plant-growth promoting pine endophyte with antagonistic effects. Environ Microbiol 2016; 18:5265–5276 [View Article][PubMed]
    [Google Scholar]
  11. Murfin KE, Dillman AR, Foster JM, Bulgheresi S, Slatko BE et al. Nematode-bacterium symbioses — cooperation and conflict revealed in the "omics" age. Biol Bull 2012; 223:85–102 [View Article][PubMed]
    [Google Scholar]
  12. Oku H. Role of phytotoxins in pine wilt diseases. J Nematol 1988; 20:245–251
    [Google Scholar]
  13. Nascimento FX, Hasegawa K, Mota M, Vicente CSL. Bacterial role in pine wilt disease development – review and future perspectives. Environ Microbiol Rep 2015; 7:51–63 [View Article]
    [Google Scholar]
  14. Prischmann DA, Lehman RM, Christie AA, Dashiell KE. Characterization of bacteria isolated from maize roots: emphasis on Serratia and infestation with corn rootworms (Chrysomelidae: Diabrotica). Appl Soil Ecol 2008; 40:417–431 [View Article]
    [Google Scholar]
  15. Turner TR, James EK, Poole PS et al. The plant microbiome. Genome Biol 2013; 14:209 [View Article]
    [Google Scholar]
  16. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005; 437:376–380 [View Article]
    [Google Scholar]
  17. Chevreux B, Wetter TSS. Genome sequence assembly using trace signals and additional sequence information. Comput Sci Biol Proc Ger Conf Bioinforma 1999; 99:45–56
    [Google Scholar]
  18. Darling ACE. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004; 14:1394–1403 [View Article]
    [Google Scholar]
  19. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  20. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article][PubMed]
    [Google Scholar]
  21. Dhillon BK, Laird MR, Shay JA, Winsor GL, Lo R et al. IslandViewer 3: more flexible, interactive genomic island discovery, visualization and analysis. Nucleic Acids Res 2015; 43:W104–W108 [View Article]
    [Google Scholar]
  22. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res 2011; 39:W347–W352 [View Article][PubMed]
    [Google Scholar]
  23. Eichinger V, Nussbaumer T, Platzer A, Jehl M-A, Arnold R et al. EffectiveDB—updates and novel features for a better annotation of bacterial secreted proteins and type III, IV, VI secretion systems. Nucleic Acids Res 2016; 44:D669–D674 [View Article]
    [Google Scholar]
  24. Barakat M, Ortet P, Whitworth DE. P2RP: a web-based framework for the identification and analysis of regulatory proteins in prokaryotic genomes. BMC Genomics 2013; 14:269 [View Article]
    [Google Scholar]
  25. Park BH, Karpinets TV, Syed MH, Leuze MR, Uberbacher EC. CAZymes analysis Toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology 2010; 20:1574–1584 [View Article]
    [Google Scholar]
  26. Rawlings ND, Barrett AJ, Bateman A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 2012; 40:D343–D350 [View Article]
    [Google Scholar]
  27. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ et al. antiSMASH 4.0 — improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 2017; 45:W36–W41 [View Article]
    [Google Scholar]
  28. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28:1647–1649 [View Article]
    [Google Scholar]
  29. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Peer J Prepr 2016 doi:10.7287/peerj.preprints.1900v1
    [Google Scholar]
  30. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK et al. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  31. Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011; 12:402 [View Article]
    [Google Scholar]
  32. Grimont PAD, Grimont F, Irino K. Biochemical characterization of Serratia liquefaciens sensu stricto, Serratia proteamaculans, and Serratia grimesii sp. nov. Curr Microbiol 1982; 7:69–74 [View Article]
    [Google Scholar]
  33. Ashelford KE, Bailey MJ, Fry JC, Day MJ. Characterization of Serratia isolates from soil, ecological implications and transfer of Serratia proteamaculans subsp. quinovora Grimont et al. 1983 to Serratia quinivorans corrig., sp. nov. Int J Syst Evol Microbiol 2002; 52:2281–2289
    [Google Scholar]
  34. Loper JE. Current review siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Interact 1991; 4:5––13 [View Article]
    [Google Scholar]
  35. Hall C, Brachat S, Dietrich FS. Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae . Eukaryot Cell 2005; 4:1102–1115 [View Article][PubMed]
    [Google Scholar]
  36. Hove-Jensen B, Zechel DL, Jochimsen B. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase. Microbiol Mol Biol Rev 2014; 78:176–197 [View Article][PubMed]
    [Google Scholar]
  37. Aminov RI. The role of antibiotics and antibiotic resistance in nature. Environ Microbiol 2009; 11:2970–2988 [View Article]
    [Google Scholar]
  38. Majeed H, Lampert A, Ghazaryan L, Gillor O. The weak shall inherit: bacteriocin-mediated interactions in bacterial populations. PLoS One 2013; 8:e63837 [View Article][PubMed]
    [Google Scholar]
  39. Riley MA, Wertz JE. Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 2002; 84:357–364 [View Article]
    [Google Scholar]
  40. Li H, Tanikawa T, Sato Y, Nakagawa Y, Matsuyama T. Serratia marcescens gene required for surfactant serrawettin W1 production encodes putative aminolipid synthetase belonging to nonribosomal peptide synthetase family. Microbiol Immunol 2005; 49:303–310 [View Article][PubMed]
    [Google Scholar]
  41. Matsuyama T, Matsushita M. Fractal morphogenesis by a bacterial cell population. Crit Rev Microbiol 1993; 19:117–135 [View Article][PubMed]
    [Google Scholar]
  42. Wasserman HH, Keggi JJ, McKeon JE. Serratamolide, a metabolic product of Serratia . J Am Chem Soc 1961; 83:4107–4108 [View Article]
    [Google Scholar]
  43. Sunaga S, Li H, Sato Y, Nakagawa Y, Matsuyama T. Identification and characterization of the pswP gene required for the parallel production of prodigiosin and serrawettin W1 in Serratia marcescens . Microbiol Immunol 2004; 48:723–728 [View Article][PubMed]
    [Google Scholar]
  44. Chernin L, Brandis A, Ismailov Z, Chet I. Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial phytopathogens. Curr Microbiol 1996; 32:208–212 [View Article]
    [Google Scholar]
  45. Blumer C, Haas D. Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 2000; 173:170–177 [View Article][PubMed]
    [Google Scholar]
  46. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 2015; 79:293–320 [View Article][PubMed]
    [Google Scholar]
  47. Tavares MJ, Nascimento FX, Glick BR, Rossi MJ. The expression of an exogenous ACC deaminase by the endophyte Serratia grimesii BXF1 promotes the early nodulation and growth of common bean. Lett Appl Microbiol 2018; 66:252–259 [View Article]
    [Google Scholar]
  48. Walker TS, Bais HP, Grotewold E, Vivanco JM. Root exudation and rhizosphere biology. Plant Physiol 2003; 132:44–51 [View Article][PubMed]
    [Google Scholar]
  49. Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N et al. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact 2006; 19:250–256 [View Article][PubMed]
    [Google Scholar]
  50. Koroney AS, Plasson C, Pawlak B, Sidikou R, Driouich A et al. Root exudate of Solanum tuberosum is enriched in galactose-containing molecules and impacts the growth of Pectobacterium atrosepticum . Ann Bot 2016; 118:797–808 [View Article]
    [Google Scholar]
  51. Rossbach S, Kulpa DA, Rossbach U, de Bruijn FJ. Molecular and genetic characterization of the rhizopine catabolism (mocABRC) genes of Rhizobium meliloti L5-30. Mol Gen Genet 1994; 245:11–24 [View Article]
    [Google Scholar]
  52. Galbraith MP, Feng SF, Borneman J, Triplett EW, de Bruijn FJ et al. A functional myo-inositol catabolism pathway is essential for rhizopine utilization by Sinorhizobium meliloti . Microbiology 1998; 144:2915–2924 [View Article]
    [Google Scholar]
  53. Gordon DM, Ryder MH, Heinrich K, Murphy PJ. An experimental test of the rhizopine concept in Rhizobium meliloti . Appl Environ Microbiol 1996; 62:3991–3996
    [Google Scholar]
  54. Rao JR, Cooper JE. Rhizobia catabolize nod gene-inducing flavonoids via C-ring fission mechanisms. J Bacteriol 1994; 176:5409–5413 [View Article]
    [Google Scholar]
  55. Pillai BV, Swarup S. Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling. Appl Environ Microbiol 2002; 68:143–151 [View Article][PubMed]
    [Google Scholar]
  56. Adams M, Jia Z. Structural and biochemical analysis reveal pirins to possess quercetinase activity. J Biol Chem 2005; 280:28675–28682 [View Article][PubMed]
    [Google Scholar]
  57. Furuya T, Kino K. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives. Appl Microbiol Biotechnol 2014; 98:1145–1154 [View Article]
    [Google Scholar]
  58. Xun L, Sandvik ER. Characterization of 4-hydroxyphenylacetate 3-hydroxylase (HpaB) of Escherichia coli as a reduced flavin adenine dinucleotide-utilizing monooxygenase. Appl Environ Microbiol 2000; 66:481–486 [View Article][PubMed]
    [Google Scholar]
  59. Dixon RA, Achnine L, Kota P, Liu C-J, Reddy MSS et al. The phenylpropanoid pathway and plant defence - a genomics perspective. Mol Plant Pathol 2002; 3:371–390 [View Article]
    [Google Scholar]
  60. Hassaninasab A, Hashimoto Y, Tomita-Yokotani K, Kobayashi M. Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism. Proc Natl Acad Sci USA 2011; 108:6615–6620 [View Article][PubMed]
    [Google Scholar]
  61. Rosenblueth M, Martínez-Romero E. Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 2006; 19:827–837 [View Article][PubMed]
    [Google Scholar]
  62. Ielpi L, Dylan T, Ditta GS, Helinski DR, Stanfield SW. The ndvB locus of Rhizobium meliloti encodes a 319-kDa protein involved in the production of beta-(1-2)-glucan. J Biol Chem 1990; 265:2843–2851
    [Google Scholar]
  63. Escamilla-Treviño LL, Chen W, Card ML, Shih M-C, Cheng C-L et al. Arabidopsis thaliana β-glucosidases BGLU45 and BGLU46 hydrolyse monolignol glucosides. Phytochemistry 2006; 67:1651–1660 [View Article]
    [Google Scholar]
  64. Newman M-A, Sundelin T, Nielsen JT, Erbs G. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci 2013; 4:139 [View Article]
    [Google Scholar]
  65. Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 2014; 158:412–421 [View Article][PubMed]
    [Google Scholar]
  66. Papadopoulos CJ, Carson CF, Chang BJ, Riley TV. Role of the MexAB-OprM efflux pump of Pseudomonas aeruginosa in tolerance to tea tree (Melaleuca alternifolia) oil and its monoterpene components terpinen-4-ol, 1,8-cineole, and alpha-terpineol. Appl Environ Microbiol 2008; 74:1932–1935
    [Google Scholar]
  67. Duca D, Lorv J, Patten CL, Rose D, Glick BR. Indole-3-acetic acid in plant–microbe interactions. Antonie van Leeuwenhoek 2014; 106:85–125 [View Article]
    [Google Scholar]
  68. Kudoyarova GR, Melentiev AI, Martynenko EV, Timergalina LN, Arkhipova TN et al. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol Biochem 2014; 83:285–291 [View Article]
    [Google Scholar]
  69. Bakker PAHM, Ran L, Mercado-Blanco J. Rhizobacterial salicylate production provokes headaches!. Plant Soil 2014; 382:1–16 [View Article]
    [Google Scholar]
  70. Nascimento FX, Rossi MJ, Glick BR. Ethylene and 1-aminocyclopropane-1-carboxylate (ACC) in plant-bacterial interactions. Front Plant Sci 2018; 9:114 [View Article][PubMed]
    [Google Scholar]
  71. Chou JC, Mulbry WW, Cohen JD. The gene for indole-3-acetyl-L-aspartic acid hydrolase from Enterobacter agglomerans: molecular cloning, nucleotide sequence, and expression in Escherichia coli . Mol Gen Genet 1998; 259:172–178 [View Article][PubMed]
    [Google Scholar]
  72. Ludwig-Müller J. Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 2011; 62:1757–1773 [View Article]
    [Google Scholar]
  73. Sugawara S, Mashiguchi K, Tanaka K, Hishiyama S, Sakai T et al. Distinct characteristics of indole-3-acetic acid and phenylacetic acid, two common auxins in plants. Plant Cell Physiol 2015; 56:1641–1654 [View Article][PubMed]
    [Google Scholar]
  74. Großkinsky DK, Tafner R, Moreno MV, Stenglein SA, García de Salamone IE et al. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis . Sci Rep 2016; 6:23310 [View Article]
    [Google Scholar]
  75. Seo H, Kim S, Sagong H-Y, Son HF, Jin KS et al. Structural basis for cytokinin production by LOG from Corynebacterium glutamicum . Sci Rep 2016; 6:31390 [View Article]
    [Google Scholar]
  76. Taylor JL, Zaharia LI, Chen H, Anderson E, Abrams SR. Biotransformation of adenine and cytokinins by the rhizobacterium Serratia proteamaculans . Phytochemistry 2006; 67:1887–1894 [View Article]
    [Google Scholar]
  77. Hayat S, Ali B, Ahmad A. Salicylic acid: biosynthesis, metabolism and physiological role in plants. In Hayat S, Ahmad A. (editors) Salicylic Acid – a Plant Hormone Dordrecht: Springer Netherlands; 2007 pp. 1–14
    [Google Scholar]
  78. Press CM, Wilson M, Tuzun S, Kloepper JW. Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol Plant Microbe Interact 1997; 10:761–768 [View Article]
    [Google Scholar]
  79. Xie SS, Wu HJ, Zang HY, Wu LM, Zhu QQ et al. Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol Plant Microbe Interact 2014; 27:655–663 [View Article][PubMed]
    [Google Scholar]
  80. Bown AW, Shelp BJ. Plant GABA: not just a metabolite. Trends Plant Sci 2016; 21:811–813 [View Article][PubMed]
    [Google Scholar]
  81. Weise T, Thürmer A, Brady S, Kai M, Daniel R et al. VOC emission of various Serratia species and isolates and genome analysis of Serratia plymuthica 4Rx13. FEMS Microbiol Lett 2014; 352:45–53 [View Article]
    [Google Scholar]
  82. Schulz S, Dickschat JS. Bacterial volatiles: the smell of small organisms. Nat Prod Rep 2007; 24:814–842 [View Article]
    [Google Scholar]
  83. Audrain B, Farag MA, Ryu C-M, Ghigo J-M. Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 2015; 39:222–233 [View Article]
    [Google Scholar]
  84. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX et al. Bacterial volatiles promote growth in Arabidopsis . Proc Natl Acad Sci USA 2003; 100:4927–4932 [View Article][PubMed]
    [Google Scholar]
  85. Marilley L, Casey MG. Flavours of cheese products: metabolic pathways, analytical tools and identification of producing strains. Int J Food Microbiol 2004; 90:139–159 [View Article]
    [Google Scholar]
  86. Höflich J, Berninsone P, Göbel C, Gravato-Nobre MJ, Libby BJ et al. Loss of srf-3-encoded nucleotide sugar transporter activity in Caenorhabditis elegans alters surface antigenicity and prevents bacterial adherence. J Biol Chem 2004; 279:30440–30448 [View Article][PubMed]
    [Google Scholar]
  87. Horiuchi J-Ichiro, Prithiviraj B, Bais HP, Kimball BA, Vivanco JM. Soil nematodes mediate positive interactions between legume plants and Rhizobium bacteria. Planta 2005; 222:848–857 [View Article]
    [Google Scholar]
  88. Kikuchi T, Cotton JA, Dalzell JJ, Hasegawa K, Kanzaki N et al. Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus . PLoS Pathog 2011; 7:e1002219 [View Article][PubMed]
    [Google Scholar]
  89. Futai K. Pine wood nematode, Bursaphelenchus xylophilus . Annu Rev Phytopathol 2013; 51:61–83 [View Article][PubMed]
    [Google Scholar]
  90. Davis MW, Birnie AJ, Chan AC, Page AP, Jorgensen EM. A conserved metalloprotease mediates ecdysis in Caenorhabditis elegans . Development 2004; 131:6001–6008 [View Article]
    [Google Scholar]
  91. Suzuki M, Sagoh N, Iwasaki H, Inoue H, Takahashi K. Metalloproteases with EGF, CUB, and thrombospondin-1 domains function in molting of Caenorhabditis elegans . Biol Chem 2004; 385:565–568 [View Article]
    [Google Scholar]
  92. Wang H, Dowds BC. Phase variation in Xenorhabdus luminescens: cloning and sequencing of the lipase gene and analysis of its expression in primary and secondary phases of the bacterium. J Bacteriol 1993; 175:1665–1673 [View Article]
    [Google Scholar]
  93. Nakahama K, Yoshimura K, Marumoto R, Kikuchi M, Lee IS et al. Cloning and sequencing of Serratia protease gene. Nucleic Acids Res 1986; 14:5843–5855 [View Article]
    [Google Scholar]
  94. Dahler GS, Barras F, Keen NT. Cloning of genes encoding extracellular metalloproteases from Erwinia chrysanthemi Ec16. Phytopathology 1990; 80:983–984
    [Google Scholar]
  95. Tsaplina O, Efremova T, Demidyuk I, Khaitlina S. Filamentous actin is a substrate for protealysin, a metalloprotease of invasive Serratia proteamaculans . FEBS J 2012; 279:264–274 [View Article]
    [Google Scholar]
  96. Mardanova AM, Toymentseva AA, Gilyazeva AG, Kazakov SV, Shagimardanova EI et al. Draft genome sequence of Serratia grimesii strain A2. Genome Announc 2014; 2:e00937-14 [View Article][PubMed]
    [Google Scholar]
  97. Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A et al. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 2009; 75:748–757 [View Article][PubMed]
    [Google Scholar]
  98. Nicholson WL, Leonard MT, Fajardo-Cavazos P, Panayotova N, Farmerie WG et al. Complete genome sequence of Serratia liquefaciens strain ATCC 27592. Genome Announc 2013; 1:e00548-13e00548-13 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000178
Loading
/content/journal/mgen/10.1099/mgen.0.000178
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error