1887

Abstract

The order Sphingomonadales is a taxon of bacteria with a variety of physiological features and carotenoid pigments. Some of the coloured strains within this order are known to be aerobic anoxygenic phototrophs that contain characteristic photosynthesis gene clusters (PGCs). Previous work has shown that majority of the ORFs putatively involved in the biosynthesis of C40 carotenoids are located outside the PGCs in these strains. The main purpose of this study was to understand the genetic basis for the various colour/carotenoid phenotypes of the strains of Sphingomonadales. Comparative analyses of the genomes of 41 strains of this order revealed that there were different patterns of clustering of carotenoid biosynthesis (crt) ORFs, with four ORF clusters being the most common. The analyses also revealed that co-occurrence of crtY and crtI is an evolutionarily conserved feature in Sphingomonadales and other carotenogenic bacteria. The comparisons facilitated the categorisation of bacteria of this order into four groups based on the presence of different crt ORFs. Yellow coloured strains most likely accumulate nostoxanthin, and contain six ORFs (group I: crtE, crtB, crtI, crtY, crtZ, crtG). Orange coloured strains may produce adonixanthin, astaxanthin, canthaxanthin and erythroxanthin, and contain seven ORFs (group II: crtE, crtB, crtI, crtY, crtZ, crtG, crtW). Red coloured strains may accumulate astaxanthin, and contain six ORFs (group III: crtE, crtB, crtI, crtY, crtZ, crtW). Non-pigmented strains may contain a smaller subset of crt ORFs, and thus fail to produce any carotenoids (group IV). The functions of many of these ORFs remain to be characterised.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000172
2018-04-05
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/4/mgen000172.html?itemId=/content/journal/mgen/10.1099/mgen.0.000172&mimeType=html&fmt=ahah

References

  1. Garrity GM, Bell JA, Lilburn T. Phylum XIV. Proteobacteria phyl. nov. In Brenner D, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology (The Proteobacteria), part B (The Gammaproteobacteria), 2nd ed..vol. 2. New York:: Springer; 2005; pp.1
    [Google Scholar]
  2. Garrity GM, Bell JA, Lilburn T. Class I. Alphaproteobacteria class. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria, 2nd ed..vol. 2. New York:: Springer; 2005; pp.1
    [Google Scholar]
  3. Yabuuchi E, Kosako Y. Order IV. Sphingomonadales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), 2nd ed..vol. 2. New York:: Springer; 2005; pp.230–286
    [Google Scholar]
  4. Lee KB, Liu CT, Anzai Y, Kim H, Aono T et al. The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005;55:1907–1919 [CrossRef][PubMed]
    [Google Scholar]
  5. Swingley WD, Blankenship RE, Raymond J. Evolutionary relationships among purple photosynthetic bacteria and the origin of proteobacterial photosynthetic systems. In Hunter CN, Daldal F, Thurnauer MC, Beatty JT. (editors) The Purple Phototrophic Bacteria. New York:: Springer; 2009; pp.17–29
    [Google Scholar]
  6. Yurkov VV, Beatty JT. Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 1998;62:695–724[PubMed]
    [Google Scholar]
  7. Yurkov V, Csotonyi JT. New light on aerobic anoxygenic phototrophs. In Hunter CN, Daldal F, Thurnauer MC, Beatty JT. (editors) The Purple Phototrophic Bacteria. New York:: Springer; 2009; pp.31–55
    [Google Scholar]
  8. Shiba T, Simidu U. Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 1982;32:211–217 [CrossRef]
    [Google Scholar]
  9. Koblížek M. Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev 2015;39:854–870 [CrossRef][PubMed]
    [Google Scholar]
  10. Fuerst JA, Hawkins JA, Holmes A, Sly LI, Moore CJ et al. Porphyrobacter neustonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesizing budding bacterium from fresh water. Int J Syst Bacteriol 1993;43:125–134 [CrossRef][PubMed]
    [Google Scholar]
  11. Kosako Y, Yabuuchi E, Naka T, Fujiwara N, Kobayashi K. Proposal of Sphingomonadaceae fam. nov., consisting of Sphingomonas Yabuuchi et al. 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al. 1997, with the type genus Sphingomonas Yabuuchi et al. 1990. Microbiol Immunol 2000;44:563–575 [CrossRef][PubMed]
    [Google Scholar]
  12. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 2002;52:1485–1496 [CrossRef][PubMed]
    [Google Scholar]
  13. Hiraishi A, Yonemitsu Y, Matsushita M, Shin Y, Kuraishi H et al. Characterization of Porphyrobacter sanguineus sp. nov., an aerobic bacteriochlorophyll-containing bacterium capable of degrading biphenyl and dibenzofuran. Arch Microbiol 2002;178:45–52 [CrossRef]
    [Google Scholar]
  14. Zheng Q, Zhang R, Koblížek M, Boldareva EN, Yurkov V et al. Diverse arrangement of photosynthetic gene clusters in aerobic anoxygenic phototrophic bacteria. PLoS One 2011;6:e25050 [CrossRef][PubMed]
    [Google Scholar]
  15. Liu Q, Wu YH, Cheng H, Xu L, Wang CS et al. Complete genome sequence of bacteriochlorophyll-synthesizing bacterium Porphyrobacter neustonensis DSM 9434. Stand Genomic Sci 2017;12:32 [CrossRef][PubMed]
    [Google Scholar]
  16. Glaeser SP, Kämpfer P. The family Sphingomonadaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes (Alphaproteobacteria and Betaproteobacteria), 4th ed.. New York:: Springer; 2014; pp.641–707
    [Google Scholar]
  17. Tonon LAC, Moreira APB, Thompson F. The family Erythrobacteraceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes (Alphaproteobacteria and Betaproteobacteria), 4th ed.. New York:: Springer; 2014; pp.213–235
    [Google Scholar]
  18. Nupur LN, Vats A, Dhanda SK, Raghava GP, Pinnaka AK et al. ProCarDB: a database of bacterial carotenoids. BMC Microbiol 2016;16:96 [CrossRef][PubMed]
    [Google Scholar]
  19. Yabuzaki J. Carotenoids database: structures, chemical fingerprints and distribution among organisms. Database 2017;2017::bax004 [CrossRef][PubMed]
    [Google Scholar]
  20. Takaichi S. Distribution and biosynthesis of carotenoids. In Hunter CN, Daldal F, Thurnauer MC, Beatty JT. (editors) The Purple Phototrophic Bacteria. New York:: Springer; 2009; pp.97–117
    [Google Scholar]
  21. Zhu L, Wu X, Li O, Qian C, Gao H. Cloning and characterization of genes involved in nostoxanthin biosynthesis of Sphingomonas elodea ATCC 31461. PLoS One 2012;7:e35099 [CrossRef][PubMed]
    [Google Scholar]
  22. Liu X, Gai Z, Tao F, Tang H, Xu P. Carotenoids play a positive role in the degradation of heterocycles by Sphingobium yanoikuyae. PLoS One 2012;7:e39522 [CrossRef][PubMed]
    [Google Scholar]
  23. Kim SH, Kim JH, Lee BY, Lee PC. The astaxanthin dideoxyglycoside biosynthesis pathway in Sphingomonas sp. PB304. Appl Microbiol Biotechnol 2014;98:9993–10003 [CrossRef][PubMed]
    [Google Scholar]
  24. Zheng Q, Liu Y, Jeanthon C, Zhang R, Lin W et al. Geographic impact on genomic divergence as revealed by comparison of nine citromicrobial genomes. Appl Environ Microbiol 2016;82:7205–7216 [CrossRef][PubMed]
    [Google Scholar]
  25. Wu M, Huang H, Li G, Ren Y, Shi Z et al. The evolutionary life cycle of the polysaccharide biosynthetic gene cluster based on the Sphingomonadaceae. Sci Rep 2017;7:46484 [CrossRef][PubMed]
    [Google Scholar]
  26. Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y et al. Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol 1990;172:6704–6712 [CrossRef][PubMed]
    [Google Scholar]
  27. Sedkova N, Tao L, Rouvière PE, Cheng Q. Diversity of carotenoid synthesis gene clusters from environmental Enterobacteriaceae strains. Appl Environ Microbiol 2005;71:8141–8146 [CrossRef][PubMed]
    [Google Scholar]
  28. Nishida Y, Adachi K, Kasai H, Shizuri Y, Shindo K et al. Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2,2'-beta-hydroxylase, from Brevundimonas sp. strain SD212 and combinatorial biosynthesis of new or rare xanthophylls. Appl Environ Microbiol 2005;71:4286–4296 [CrossRef][PubMed]
    [Google Scholar]
  29. Henke NA, Heider SAE, Hannibal S, Wendisch VF, Peters-Wendisch P. Isoprenoid pyrophosphate-dependent transcriptional regulation of carotenogenesis in Corynebacterium glutamicum. Front Microbiol 2017;8:633 [CrossRef][PubMed]
    [Google Scholar]
  30. Sakharkar KR, Sakharkar MK, Verma C, Chow VTK. Comparative study of overlapping genes in bacteria, with special reference to Rickettsia prowazekii and Rickettsia conorii. Int J Syst Evol Microbiol 2005;55:1205–1209 [CrossRef]
    [Google Scholar]
  31. Mir K, Neuhaus K, Scherer S, Bossert M, Schober S. Predicting statistical properties of open reading frames in bacterial genomes. PLoS One 2012;7:e45103 [CrossRef][PubMed]
    [Google Scholar]
  32. Armstrong GA, Alberti M, Leach F, Hearst JE. Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol Gen Genet 1989;216:254–268 [CrossRef][PubMed]
    [Google Scholar]
  33. Misawa N, Satomi Y, Kondo K, Yokoyama A, Kajiwara S et al. Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol 1995;177:6575–6584 [CrossRef][PubMed]
    [Google Scholar]
  34. Hannibal L, Lorquin J, D'Ortoli NA, Garcia N, Chaintreuil C et al. Isolation and characterization of canthaxanthin biosynthesis genes from the photosynthetic bacterium Bradyrhizobium sp. strain ORS278. J Bacteriol 2000;182:3850–3853 [CrossRef][PubMed]
    [Google Scholar]
  35. Cunningham FX, Sun Z, Chamovitz D, Hirschberg J, Gantt E. Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942. Plant Cell 1994;6:1107–1121 [CrossRef][PubMed]
    [Google Scholar]
  36. Yu Q, Schaub P, Ghisla S, Al-Babili S, Krieger-Liszkay A et al. The lycopene cyclase CrtY from Pantoea ananatis (formerly Erwinia uredovora) catalyzes an FADred-dependent non-redox reaction. J Biol Chem 2010;285:12109–12120 [CrossRef][PubMed]
    [Google Scholar]
  37. Schaub P, Yu Q, Gemmecker S, Poussin-Courmontagne P, Mailliot J et al. On the structure and function of the phytoene desaturase CRTI from Pantoea ananatis, a membrane-peripheral and FAD-dependent oxidase/isomerase. PLoS One 2012;7:e39550 [CrossRef][PubMed]
    [Google Scholar]
  38. Frebort I, Kowalska M, Hluska T, Frebortova J, Galuszka P. Evolution of cytokinin biosynthesis and degradation. J Exp Bot 2011;62:2431–2452 [CrossRef]
    [Google Scholar]
  39. Samanovic MI, Darwin KH. Cytokinins beyond plants: synthesis by Mycobacterium tuberculosis. Microb Cell 2015;2:168–170 [CrossRef][PubMed]
    [Google Scholar]
  40. Seo H, Kim S, Sagong HY, Son HF, Jin KS et al. Structural basis for cytokinin production by LOG from Corynebacterium glutamicum. Sci Rep 2016;6:31390 [CrossRef][PubMed]
    [Google Scholar]
  41. Taller BJ. Distribution, biosynthesis, and function of cytokinins in tRNA. In DWS Mok, Mok MC. (editors) Cytokinins: Chemistry, Activity and Function. Boca Raton, FL:: CRC Press; 1994; pp.101–112
    [Google Scholar]
  42. Samanovic MI, Tu S, Novák O, Iyer LM, McAllister FE et al. Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide. Mol Cell 2015;57:984–994 [CrossRef][PubMed]
    [Google Scholar]
  43. Buschmann C, Lichtenthaler HK. The effect of cytokinins on growth and pigment accumulation of radish seedlings (Raphanus sativus L.) grown in the dark and at different light quanta fluence rates. Photochem Photobiol 1982;35:217–221 [CrossRef]
    [Google Scholar]
  44. Gemmrich A, Kayser H. Hormone induced changes in carotenoid composition in Ricinus cell cultures. II. Accumulation of rhodoxanthin during auxin-controlled chromoplast differentiation. Z Naturforsch 1984;39c:753–757
    [Google Scholar]
  45. Czerpak R, Bajguz A. Stimulatory effect of auxins and cytokinins on carotenes, with differential effects on xanthophylls in the green alga Chlorella pyrenoidosa chick. Acta Societatis Botanicorum Poloniae 1997;66:41–46 [CrossRef]
    [Google Scholar]
  46. Morris RO, Powell GK. Genes specifying cytokinin biosynthesis in prokaryotes. Bioessays 1987;6:23–28 [CrossRef]
    [Google Scholar]
  47. Akiyoshi DE, Regier DA, Gordon MP. Cytokinin production by Agrobacterium and Pseudomonas spp. J Bacteriol 1987;169:4242–4248 [CrossRef]
    [Google Scholar]
  48. Iwai M, Maoka T, Ikeuchi M, Takaichi S. 2,2'-Beta-hydroxylase (CrtG) is involved in carotenogenesis of both nostoxanthin and 2-hydroxymyxol 2'-fucoside in Thermosynechococcus elongatus strain BP-1. Plant Cell Physiol 2008;49:1678–1687 [CrossRef][PubMed]
    [Google Scholar]
  49. Lotan T, Hirschberg J. Cloning and expression in Escherichia coli of the gene encoding β-C-4-oxygenase, that converts β-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett 1995;364:125–128[PubMed]
    [Google Scholar]
  50. Kajiwara S, Kakizono T, Saito T, Kondo K, Ohtani T et al. Isolation and functional identification of a novel cDNA for astaxanthin biosynthesis from Haematococcus pluvialis, and astaxanthin synthesis in Escherichia coli. Plant Mol Biol 1995;29:343–352 [CrossRef]
    [Google Scholar]
  51. Misawa N, Kajiwara S, Kondo K, Yokoyama A, Satomi Y et al. Canthaxanthin biosynthesis by the conversion of methylene to keto groups in a hydrocarbon β-carotene by a single gene. Biochem Biophys Res Commun 1995;209:867–876 [CrossRef][PubMed]
    [Google Scholar]
  52. Rw Y, Stead KJ, Yao H, He H. Mutational and functional analysis of the β-carotene ketolase involved in the production of canthaxanthin and astaxanthin. Appl Environ Microbiol 2006;72:5829–5837
    [Google Scholar]
  53. Klassen JL. Phylogenetic and evolutionary patterns in microbial carotenoid biosynthesis are revealed by comparative genomics. PLoS One 2010;5:e11257 [CrossRef][PubMed]
    [Google Scholar]
  54. Misawa N. Carotenoid β-ring hydroxylase and ketolase from marine bacteria-promiscuous enzymes for synthesizing functional xanthophylls. Mar Drugs 2011;9:757–771 [CrossRef][PubMed]
    [Google Scholar]
  55. Hundle B, Alberti M, Nievelstein V, Beyer P, Kleinig H et al. Functional assignment of Erwinia herbicola Eho10 carotenoid genes expressed in Escherichia coli. Mol Gen Genet 1994;245:406–416 [CrossRef][PubMed]
    [Google Scholar]
  56. Larsen R, Wilson M, Guss A, Metcalf W. Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Arch Microbiol 2002;178:193–201 [CrossRef]
    [Google Scholar]
  57. Seo YB, Choi SS, Nam SW, Lee JH, Kim YT. Cloning and characterization of the zeaxanthin glucosyltransferase gene (crtX) from the astaxanthin-producing marine bacterium, Paracoccus haeundaensis. J Microbiol Biotechnol 2009;19:1542–1546 [CrossRef][PubMed]
    [Google Scholar]
  58. Asker D, Beppu T, Ueda K. Sphingomonas astaxanthinifaciens sp. nov., a novel astaxanthin-producing bacterium of the family Sphingomonadaceae isolated from Misasa, Tottori, Japan. FEMS Microbiol Lett 2007;273:140–148 [CrossRef]
    [Google Scholar]
  59. Kim JH, Kim SH, Kim KH, Lee PC. Sphingomonas lacus sp. nov., an astaxanthin-dideoxyglycoside-producing species isolated from soil near a pond. Int J Syst Evol Microbiol 2015;65:2824–2830 [CrossRef]
    [Google Scholar]
  60. Asker D, Amano S, Morita K, Tamura K, Sakuda S et al. Astaxanthin dirhamnoside, a new astaxanthin derivative produced by a radio-tolerant bacterium, Sphingomonas astaxanthinifaciens. J Antibiot 2009;62:397–399 [CrossRef][PubMed]
    [Google Scholar]
  61. Kavanagh KL, Dunford JE, Bunkoczi G, Russell RG, Oppermann U. The crystal structure of human geranylgeranyl pyrophosphate synthase reveals a novel hexameric arrangement and inhibitory product binding. J Biol Chem 2006;281:22004–22012 [CrossRef][PubMed]
    [Google Scholar]
  62. Umeno D, Tobias AV, Arnold FH. Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 2005;69:51–78 [CrossRef][PubMed]
    [Google Scholar]
  63. Matsumoto M, Iwama D, Arakaki A, Tanaka A, Tanaka T et al. Altererythrobacter ishigakiensis sp. nov., an astaxanthin-producing bacterium isolated from a marine sediment. Int J Syst Evol Microbiol 2011;61:2956–2961 [CrossRef]
    [Google Scholar]
  64. Huang HD, Wang W, Ma T, Li GQ, Liang FL et al. Sphingomonas sanxanigenens sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009;59:719–723 [CrossRef][PubMed]
    [Google Scholar]
  65. Wei S, Wang T, Liu H, Zhang C, Guo J et al. Sphingomonas hengshuiensis sp. nov., isolated from lake wetland. Int J Syst Evol Microbiol 2015;65:4644–4649 [CrossRef][PubMed]
    [Google Scholar]
  66. Schmidt-Dannert C, Umeno D, Arnold FH. Molecular breeding of carotenoid biosynthetic pathways. Nat Biotechnol 2000;18:750–753 [CrossRef]
    [Google Scholar]
  67. Arrach N, Fernández-Martín R, Cerdá-Olmedo E, Avalos J. A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces. Proc Natl Acad Sci USA 2001;98:1687–1692 [CrossRef][PubMed]
    [Google Scholar]
  68. Maresca JA, Graham JE, Wu M, Eisen JA, Bryant DA. Identification of a fourth family of lycopene cyclases in photosynthetic bacteria. Proc Natl Acad Sci USA 2007;104:11784–11789 [CrossRef][PubMed]
    [Google Scholar]
  69. Xu Z, Tian B, Sun Z, Lin J, Hua Y. Identification and functional analysis of a phytoene desaturase gene from the extremely radioresistant bacterium Deinococcus radiodurans. Microbiology 2007;153:1642–1652 [CrossRef]
    [Google Scholar]
  70. Misawa N, Yamano S, Ikenaga H. Production of β-carotene in Zymomonas mobilis and Agrobacterium tumefaciens by introduction of the biosynthesis genes from Erwinia uredovora. Appl Environ Microbiol 1991;57:1847–1849[PubMed]
    [Google Scholar]
  71. Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G et al. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 2007;73:4342–4350 [CrossRef][PubMed]
    [Google Scholar]
  72. Wassef L, Wirawan R, Chikindas M, Breslin PA, Hoffman DJ et al. β-Carotene-producing bacteria residing in the intestine provide vitamin A to mouse tissues in vivo. J Nutr 2014;144:608–613 [CrossRef][PubMed]
    [Google Scholar]
  73. Berry A, Janssens D, Hümbelin M, Jore JP, Hoste B et al. Paracoccus zeaxanthinifaciens sp. nov., a zeaxanthin-producing bacterium. Int J Syst Evol Microbiol 2003;53:231–238 [CrossRef][PubMed]
    [Google Scholar]
  74. Hameed A, Shahina M, Lin SY, Lai WA, Hsu YH et al. Aquibacter zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from surface seawater, and emended descriptions of the genera Aestuariibaculum and Gaetbulibacter. Int J Syst Evol Microbiol 2014;64:138–145 [CrossRef][PubMed]
    [Google Scholar]
  75. Lee JH, Hwang YM, Baik KS, Choi KS, Ka JO et al. Mesoflavibacter aestuarii sp. nov., a zeaxanthin-producing marine bacterium isolated from seawater. Int J Syst Evol Microbiol 2014;64:1932–1937 [CrossRef][PubMed]
    [Google Scholar]
  76. Zhang W, Hu X, Wang L, Wang X. Reconstruction of the carotenoid biosynthetic pathway of Cronobacter sakazakii BAA894 in Escherichia coli. PLoS One 2014;9:e86739 [CrossRef][PubMed]
    [Google Scholar]
  77. Vancanneyt M, Schut F, Snauwaert C, Goris J, Swings J et al. Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. Int J Syst Evol Microbiol 2001;51:73–79 [CrossRef][PubMed]
    [Google Scholar]
  78. Oelschlägel M, Rückert C, Kalinowski J, Schmidt G, Schlömann M et al. Sphingopyxis fribergensis sp. nov., a soil bacterium with the ability to degrade styrene and phenylacetic acid. Int J Syst Evol Microbiol 2015;65:3008–3015 [CrossRef][PubMed]
    [Google Scholar]
  79. Hatanaka T, Asahi N, Tsuji M. Purification and characterization of poly(vinyl alcohol) dehydrogenase from Pseudomonas sp. 113P3. Biosci Biotechnol Biochem 1995;59:1813–1816 [CrossRef]
    [Google Scholar]
  80. Takeuchi M, Kawai F, Shimada Y, Yokota A. Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Microbiol 1993;16:227–238 [CrossRef]
    [Google Scholar]
  81. Pollock TJ. Gellan-related polysaccharides and the genus Sphingomonas. J Gen Microbiol 1993;139:1939–1945 [CrossRef]
    [Google Scholar]
  82. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990;34:99–119 [CrossRef][PubMed]
    [Google Scholar]
  83. Nohynek LJ, Suhonen EL, Nurmiaho-Lassila E-L, Hantula J, Salkinoja-Salonen M. Description of four pentachlorophenol-degrading bacterial strains as Sphingomonas chlorophenolica sp. nov. Syst Appl Microbiol 1995;18:527–538 [CrossRef]
    [Google Scholar]
  84. Ito M, Prokop Z, Klvana M, Otsubo Y, Tsuda M et al. Degradation of β-hexachlorocyclohexane by haloalkane dehalogenase LinB from γ-hexachlorocyclohexane-utilizing bacterium Sphingobium sp. MI1205. Arch Microbiol 2007;188:313–325 [CrossRef][PubMed]
    [Google Scholar]
  85. Sun J-Q, Huang X, Chen Q-L, Liang B, Qiu J-G et al. Isolation and characterization of three Sphingobium sp. strains capable of degrading isoproturon and cloning of the catechol 1,2-dioxygenase gene from these strains. World J Microbiol Biotechnol 2009;25:259–268 [CrossRef]
    [Google Scholar]
  86. Balkwill DL, Drake GR, Reeves RH, Fredrickson JK, White DC et al. Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 1997;47:191–201 [CrossRef][PubMed]
    [Google Scholar]
  87. Fan ZY, Xiao YP, Hui W, Tian GR, Lee JS et al. Altererythrobacter dongtanensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2011;61:2035–2039 [CrossRef][PubMed]
    [Google Scholar]
  88. Park SC, Baik KS, Choe HN, Lim CH, Kim HJ et al. Altererythrobacter namhicola sp. nov. and Altererythrobacter aestuarii sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011;61:709–715 [CrossRef]
    [Google Scholar]
  89. Li ZY, Wu YH, Huo YY, Cheng H, Wang CS et al. Complete genome sequence of a benzo[a]pyrene-degrading bacterium Altererythrobacter epoxidivorans CGMCC 1.7731T. Mar Genomics 2016;25:39–41 [CrossRef][PubMed]
    [Google Scholar]
  90. Wu YH, Xu L, Meng FX, Zhang DS, Wang CS et al. Altererythrobacter atlanticus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014;64:116–121 [CrossRef][PubMed]
    [Google Scholar]
  91. Oh HM, Giovannoni SJ, Ferriera S, Johnson J, Cho JC. Complete genome sequence of Erythrobacter litoralis HTCC2594. J Bacteriol 2009;191:2419–2420 [CrossRef][PubMed]
    [Google Scholar]
  92. Zhuang L, Wang W, Shao Z, Liu Y, Wang L. Erythrobacter atlanticus sp. nov., a bacterium from ocean sediment able to degrade polycyclic aromatic hydrocarbons. Int J Syst Evol Microbiol 2015;65:3714–3719 [CrossRef]
    [Google Scholar]
  93. Notomista E, Pennacchio F, Cafaro V, Smaldone G, Izzo V et al. The marine isolate Novosphingobium sp. PP1Y shows specific adaptation to use the aromatic fraction of fuels as the sole carbon and energy source. Microb Ecol 2011;61:582–594 [CrossRef][PubMed]
    [Google Scholar]
  94. Sohn JH, Kwon KK, Kang JH, Jung HB, Kim SJ. Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 2004;54:1483–1487 [CrossRef]
    [Google Scholar]
  95. Wang H, Xie C, Zhu P, Zhou NY, Lu Z. Two novel sets of genes essential for nicotine degradation bySphingomonas melonis TY. Front Microbiol 2016;7:2060 [CrossRef][PubMed]
    [Google Scholar]
  96. Seo SH, Lee SD. Altererythrobacter marensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2010;60:307–311 [CrossRef]
    [Google Scholar]
  97. Huang Y, Zeng Y, Feng H, Wu Y, Xu X. Croceicoccus naphthovorans sp. nov., a polycyclic aromatic hydrocarbons-degrading and acylhomoserine-lactone-producing bacterium isolated from marine biofilm, and emended description of the genus Croceicoccus. Int J Syst Evol Microbiol 2015;65:1531–1536 [CrossRef]
    [Google Scholar]
  98. Page M, Landry N. Bacterial mass production of taxanes with Erwinia. US Patent 1996;5561055
    [Google Scholar]
  99. Pal R, Bala S, Dadhwal M, Kumar M, Dhingra G et al. Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 2005;55:1965–1972 [CrossRef][PubMed]
    [Google Scholar]
  100. Li Y, Chen Q, Wang CH, Cai S, He J et al. Degradation of acetochlor by consortium of two bacterial strains and cloning of a novel amidase gene involved in acetochlor-degrading pathway. Bioresour Technol 2013;148:628–631 [CrossRef][PubMed]
    [Google Scholar]
  101. Yabuuchi E, Yamamoto H, Terakubo S, Okamura N, Naka T et al. Proposal of Sphingomonas wittichii sp. nov. for strain RW1T, known as a dibenzo-p-dioxin metabolizer. Int J Syst Evol Microbiol 2001;51:281–292 [CrossRef][PubMed]
    [Google Scholar]
  102. García-Romero I, Pérez-Pulido AJ, González-Flores YE, Reyes-Ramírez F, Santero E et al. Genomic analysis of the nitrate-respiring Sphingopyxis granuli (formerly Sphingomonas macrogoltabida) strain TFA. BMC Genomics 2016;17:93 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000172
Loading
/content/journal/mgen/10.1099/mgen.0.000172
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error