1887

Abstract

Members of the Mycobacterium tuberculosis complex (MTBC) are the causative agents of tuberculosis in a range of mammals, including humans. A key feature of MTBC pathogens is their high degree of genetic identity yet distinct host tropism. Notably, while Mycobacterium bovis is highly virulent and pathogenic for cattle, the human pathogen M. tuberculosis is attenuated in cattle. Previous research also suggests that host preference amongst MTBC members has a basis in host innate immune responses. To explore MTBC host tropism, we present in-depth profiling of the MTBC reference strains M. bovis AF2122/97 and M. tuberculosis H37Rv at both the global transcriptional and the translational level via RNA-sequencing and SWATH MS. Furthermore, a bovine alveolar macrophage infection time course model was used to investigate the shared and divergent host transcriptomic response to infection with M. tuberculosis H37Rv or M. bovis AF2122/97. Significant differential expression of virulence-associated pathways between the two bacilli was revealed, including the ESX-1 secretion system. A divergent transcriptional response was observed between M. tuberculosis H37Rv and M. bovis AF2122/97 infection of bovine alveolar macrophages, in particular cytosolic DNA-sensing pathways at 48 h post-infection, and highlights a distinct engagement of M. bovis with the bovine innate immune system. The work presented here therefore provides a basis for the identification of host innate immune mechanisms subverted by virulent host-adapted mycobacteria to promote their survival during the early stages of infection.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000163
2018-03-20
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/3/mgen000163.html?itemId=/content/journal/mgen/10.1099/mgen.0.000163&mimeType=html&fmt=ahah

References

  1. Whelan AO, Coad M, Cockle PJ, Hewinson G, Vordermeier M et al. Revisiting host preference in the Mycobacterium tuberculosis complex: experimental infection shows M. tuberculosis H37Rv to be avirulent in cattle. PLoS One 2010;5:e8527 [CrossRef][PubMed]
    [Google Scholar]
  2. Garnier T, Eiglmeier K, Camus JC, Medina N, Mansoor H et al. The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci USA 2003;100:7877–7882 [CrossRef][PubMed]
    [Google Scholar]
  3. Coscolla M, Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol 2014;26:431–444 [CrossRef][PubMed]
    [Google Scholar]
  4. Malone KM, Gordon SV. Mycobacterium tuberculosis complex members adapted to wild and domestic animals. Adv Exp Med Biol 2017;1019:135–154 [CrossRef][PubMed]
    [Google Scholar]
  5. WHO 2017; Global tuberculosis report. www.who.int/tb/publications/global_report/en/
  6. Abernethy DA, Upton P, Higgins IM, McGrath G, Goodchild AV et al. Bovine tuberculosis trends in the UK and the Republic of Ireland, 1995-2010. Vet Rec 2013;172:312 [CrossRef][PubMed]
    [Google Scholar]
  7. Mableson HE, Okello A, Picozzi K, Welburn SC. Neglected zoonotic diseases-the long and winding road to advocacy. PLoS Negl Trop Dis 2014;8:e2800 [CrossRef][PubMed]
    [Google Scholar]
  8. Heath D. Response to FOI request about various bovine TB costs from 2008 to 2013. In: Department for Environment, F A R A 2013
    [Google Scholar]
  9. Villarreal-Ramos B, Berg S, Whelan A, Holbert S, Carreras F et al. Experimental infection of cattle with Mycobacterium tuberculosis isolates shows the attenuation of the human tubercle bacillus for cattle. Sci Rep 2018;8:894 [CrossRef][PubMed]
    [Google Scholar]
  10. Francis J. Control of infection with the bovine tubercle bacillus. Lancet 1950;1:34–39 [CrossRef][PubMed]
    [Google Scholar]
  11. Magnus K. Epidemiological basis of tuberculosis eradication. 3. Risk of pulmonary tuberculosis after human and bovine infection. Bull World Health Organ 1966;35:483–508[PubMed]
    [Google Scholar]
  12. McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol 2015;15:87–103 [CrossRef][PubMed]
    [Google Scholar]
  13. Welin A, Lerm M. Inside or outside the phagosome? The controversy of the intracellular localization of Mycobacterium tuberculosis. Tuberculosis 2012;92:113–120 [CrossRef][PubMed]
    [Google Scholar]
  14. Dorhoi A, Kaufmann SH. Perspectives on host adaptation in response to Mycobacterium tuberculosis: modulation of inflammation. Semin Immunol 2014;26:533–542 [CrossRef][PubMed]
    [Google Scholar]
  15. Magee DA, Conlon KM, Nalpas NC, Browne JA, Pirson C et al. Innate cytokine profiling of bovine alveolar macrophages reveals commonalities and divergence in the response to Mycobacterium bovis and Mycobacterium tuberculosis infection. Tuberculosis 2014;94:441–450 [CrossRef][PubMed]
    [Google Scholar]
  16. Piercy J, Werling D, Coffey TJ. Differential responses of bovine macrophages to infection with bovine-specific and non-bovine specific mycobacteria. Tuberculosis 2007;87:415–420 [CrossRef][PubMed]
    [Google Scholar]
  17. Marino S, Cilfone NA, Mattila JT, Linderman JJ, Flynn JL et al. Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection. Infect Immun 2015;83:324–338 [CrossRef][PubMed]
    [Google Scholar]
  18. Rajaram MV, Ni B, Dodd CE, Schlesinger LS. Macrophage immunoregulatory pathways in tuberculosis. Semin Immunol 2014;26:471–485 [CrossRef][PubMed]
    [Google Scholar]
  19. Cassidy JP, Martineau AR. Innate resistance to tuberculosis in man, cattle and laboratory animal models: nipping disease in the bud?. J Comp Pathol 2014;151:291–308 [CrossRef][PubMed]
    [Google Scholar]
  20. Widdison S, Watson M, Piercy J, Howard C, Coffey TJ. Granulocyte chemotactic properties of M. tuberculosis versus M. bovis-infected bovine alveolar macrophages. Mol Immunol 2008;45:740–749 [CrossRef][PubMed]
    [Google Scholar]
  21. Malone KM, Farrell D, Stuber TP, Schubert OT, Aebersold R et al. Updated reference genome sequence and annotation ofMycobacterium bovisAF2122/97. Genome Announc 2017;5:e00157-17 [CrossRef][PubMed]
    [Google Scholar]
  22. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998;393:537–544 [CrossRef][PubMed]
    [Google Scholar]
  23. Gonzalo-Asensio J, Malaga W, Pawlik A, Astarie-Dequeker C, Passemar C et al. Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator. Proc Natl Acad Sci USA 2014;111:11491–11496 [CrossRef][PubMed]
    [Google Scholar]
  24. Malaga W, Constant P, Euphrasie D, Cataldi A, Daffé M et al. Deciphering the genetic bases of the structural diversity of phenolic glycolipids in strains of the Mycobacterium tuberculosis complex. J Biol Chem 2008;283:15177–15184 [CrossRef][PubMed]
    [Google Scholar]
  25. Sohaskey CD, Modesti L. Differences in nitrate reduction between Mycobacterium tuberculosis and Mycobacterium bovis are due to differential expression of both narGHJI and narK2. FEMS Microbiol Lett 2009;290:129–134 [CrossRef][PubMed]
    [Google Scholar]
  26. Stermann M, Bohrssen A, Diephaus C, Maass S, Bange FC. Polymorphic nucleotide within the promoter of nitrate reductase (NarGHJI) is specific for Mycobacterium tuberculosis. J Clin Microbiol 2003;41:3252–3259 [CrossRef][PubMed]
    [Google Scholar]
  27. Golby P, Hatch KA, Bacon J, Cooney R, Riley P et al. Comparative transcriptomics reveals key gene expression differences between the human and bovine pathogens of the Mycobacterium tuberculosis complex. Microbiology 2007;153:3323–3336 [CrossRef][PubMed]
    [Google Scholar]
  28. Rehren G, Walters S, Fontan P, Smith I, Zárraga AM. Differential gene expression between Mycobacterium bovis and Mycobacterium tuberculosis. Tuberculosis 2007;87:347–359 [CrossRef][PubMed]
    [Google Scholar]
  29. Gillet LC, Navarro P, Tate S, Röst H, Selevsek N et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 2012;11:O111.016717 [CrossRef][PubMed]
    [Google Scholar]
  30. Andrews S. A quality control tool for high throughput sequence data. 2010
  31. Lunter G, Goodson M. Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res 2011;21:936–939 [CrossRef][PubMed]
    [Google Scholar]
  32. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014;30:923–930 [CrossRef][PubMed]
    [Google Scholar]
  33. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550 [CrossRef][PubMed]
    [Google Scholar]
  34. Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci 2012;131:281–285 [CrossRef][PubMed]
    [Google Scholar]
  35. Minch KJ, Rustad TR, Peterson EJ, Winkler J, Reiss DJ et al. The DNA-binding network of Mycobacterium tuberculosis. Nat Commun 2015;6:5829 [CrossRef][PubMed]
    [Google Scholar]
  36. Rustad TR, Minch KJ, Ma S, Winkler JK, Hobbs S et al. Mapping and manipulating the Mycobacterium tuberculosis transcriptome using a transcription factor overexpression-derived regulatory network. Genome Biol 2014;15:502 [CrossRef][PubMed]
    [Google Scholar]
  37. Turkarslan S, Peterson EJ, Rustad TR, Minch KJ, Reiss DJ et al. A comprehensive map of genome-wide gene regulation in Mycobacterium tuberculosis. Sci Data 2015;2:150010 [CrossRef][PubMed]
    [Google Scholar]
  38. Röst HL, Rosenberger G, Navarro P, Gillet L, Miladinović SM et al. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 2014;32:219–223 [CrossRef][PubMed]
    [Google Scholar]
  39. Schubert OT, Ludwig C, Kogadeeva M, Zimmermann M, Rosenberger G et al. Absolute proteome composition and dynamics during dormancy and resuscitation of Mycobacterium tuberculosis. Cell Host Microbe 2015;18:96–108 [CrossRef][PubMed]
    [Google Scholar]
  40. Schubert OT, Mouritsen J, Ludwig C, Röst HL, Rosenberger G et al. The Mtb proteome library: a resource of assays to quantify the complete proteome of Mycobacterium tuberculosis. Cell Host Microbe 2013;13:602–612 [CrossRef][PubMed]
    [Google Scholar]
  41. Choi M, Chang CY, Clough T, Broudy D, Killeen T et al. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 2014;30:2524–2526 [CrossRef][PubMed]
    [Google Scholar]
  42. Nalpas NC, Magee DA, Conlon KM, Browne JA, Healy C et al. RNA sequencing provides exquisite insight into the manipulation of the alveolar macrophage by tubercle bacilli. Sci Rep 2015;5:13629 [CrossRef][PubMed]
    [Google Scholar]
  43. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15–21 [CrossRef][PubMed]
    [Google Scholar]
  44. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139–140 [CrossRef][PubMed]
    [Google Scholar]
  45. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 1995;57:289–300
    [Google Scholar]
  46. Foroushani AB, Brinkman FS, Lynn DJ. Pathway-GPS and SIGORA: identifying relevant pathways based on the over-representation of their gene-pair signatures. PeerJ 2013;1:e229 [CrossRef][PubMed]
    [Google Scholar]
  47. Veyrier F, Saïd-Salim B, Behr MA. Evolution of the mycobacterial SigK regulon. J Bacteriol 2008;190:1891–1899 [CrossRef][PubMed]
    [Google Scholar]
  48. Maier T, Güell M, Serrano L. Correlation of mRNA and protein in complex biological samples. FEBS Lett 2009;583:3966–3973 [CrossRef][PubMed]
    [Google Scholar]
  49. Vogel C, Abreu RS, Ko D, Le SY, Shapiro BA et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol 2010;6:400 [CrossRef][PubMed]
    [Google Scholar]
  50. Cortes T, Schubert OT, Banaei-Esfahani A, Collins BC, Aebersold R et al. Delayed effects of transcriptional responses in Mycobacterium tuberculosis exposed to nitric oxide suggest other mechanisms involved in survival. Sci Rep 2017;7:8208 [CrossRef][PubMed]
    [Google Scholar]
  51. Mehta M, Rajmani RS, Singh A. Mycobacterium tuberculosis WhiB3 responds to vacuolar pH-induced changes in mycothiol redox potential to modulate phagosomal maturation and virulence. J Biol Chem 2016;291:2888–2903 [CrossRef][PubMed]
    [Google Scholar]
  52. Gebhard S, Hümpel A, McLellan AD, Cook GM. The alternative sigma factor SigF of Mycobacterium smegmatis is required for survival of heat shock, acidic pH and oxidative stress. Microbiology 2008;154:2786–2795 [CrossRef][PubMed]
    [Google Scholar]
  53. Singh A, Crossman DK, Mai D, Guidry L, Voskuil MI et al. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS Pathog 2009;5:e1000545 [CrossRef][PubMed]
    [Google Scholar]
  54. Sherman DR, Voskuil M, Schnappinger D, Liao R, Harrell MI et al. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha -crystallin. Proc Natl Acad Sci USA 2001;98:7534–7539 [CrossRef][PubMed]
    [Google Scholar]
  55. Chen JM, Zhang M, Rybniker J, Basterra L, Dhar N et al. Phenotypic profiling of Mycobacterium tuberculosis EspA point mutants reveals that blockage of ESAT-6 and CFP-10 secretion in vitro does not always correlate with attenuation of virulence. J Bacteriol 2013;195:5421–5430 [CrossRef][PubMed]
    [Google Scholar]
  56. Solans L, Aguiló N, Samper S, Pawlik A, Frigui W et al. A specific polymorphism in Mycobacterium tuberculosis H37Rv causes differential ESAT-6 expression and identifies WhiB6 as a novel ESX-1 component. Infect Immun 2014;82:3446–3456 [CrossRef][PubMed]
    [Google Scholar]
  57. Simeone R, Bottai D, Brosch R. ESX/type VII secretion systems and their role in host-pathogen interaction. Curr Opin Microbiol 2009;12:4–10 [CrossRef][PubMed]
    [Google Scholar]
  58. Goren MB. Sulfolipid I of Mycobacterium tuberculosis, strain H37Rv. I. Purification and properties. Biochim Biophys Acta 1970;210:116–126 [CrossRef][PubMed]
    [Google Scholar]
  59. Gonzalo Asensio J, Maia C, Ferrer NL, Barilone N, Laval F et al. The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J Biol Chem 2006;281:1313–1316 [CrossRef][PubMed]
    [Google Scholar]
  60. Jain M, Petzold CJ, Schelle MW, Leavell MD, Mougous JD et al. Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling. Proc Natl Acad Sci USA 2007;104:5133–5138 [CrossRef][PubMed]
    [Google Scholar]
  61. Seeliger JC, Holsclaw CM, Schelle MW, Botyanszki Z, Gilmore SA et al. Elucidation and chemical modulation of sulfolipid-1 biosynthesis in Mycobacterium tuberculosis. J Biol Chem 2012;287:7990–8000 [CrossRef][PubMed]
    [Google Scholar]
  62. Yu J, Tran V, Li M, Huang X, Niu C et al. Both phthiocerol dimycocerosates and phenolic glycolipids are required for virulence of Mycobacterium marinum. Infect Immun 2012;80:1381–1389 [CrossRef][PubMed]
    [Google Scholar]
  63. Day TA, Mittler JE, Nixon MR, Thompson C, Miner MD et al. Mycobacterium tuberculosis strains lacking surface lipid phthiocerol dimycocerosate are susceptible to killing by an early innate host response. Infect Immun 2014;82:5214–5222 [CrossRef][PubMed]
    [Google Scholar]
  64. Zhang L, English D, Andersen BR. Activation of human neutrophils by Mycobacterium tuberculosis-derived sulfolipid-1. J Immunol 1991;146:2730–2736[PubMed]
    [Google Scholar]
  65. Brodin P, Poquet Y, Levillain F, Peguillet I, Larrouy-Maumus G et al. High content phenotypic cell-based visual screen identifies Mycobacterium tuberculosis acyltrehalose-containing glycolipids involved in phagosome remodeling. PLoS Pathog 2010;6:e1001100 [CrossRef][PubMed]
    [Google Scholar]
  66. Rousseau C, Winter N, Pivert E, Bordat Y, Neyrolles O et al. Production of phthiocerol dimycocerosates protects Mycobacterium tuberculosis from the cidal activity of reactive nitrogen intermediates produced by macrophages and modulates the early immune response to infection. Cell Microbiol 2004;6:277–287 [CrossRef][PubMed]
    [Google Scholar]
  67. Astarie-Dequeker C, Le Guyader L, Malaga W, Seaphanh FK, Chalut C et al. Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathog 2009;5:e1000289 [CrossRef][PubMed]
    [Google Scholar]
  68. Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L et al. Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog 2012;8:e1002507 [CrossRef][PubMed]
    [Google Scholar]
  69. Simeone R, Bottai D, Frigui W, Majlessi L, Brosch R. ESX/type VII secretion systems of mycobacteria: Insights into evolution, pathogenicity and protection. Tuberculosis 2015;95:S150–S154 [CrossRef][PubMed]
    [Google Scholar]
  70. Chim N, Johnson PM, Goulding CW. Insights into redox sensing metalloproteins in Mycobacterium tuberculosis. J Inorg Biochem 2014;133:118–126 [CrossRef][PubMed]
    [Google Scholar]
  71. Cao G, Howard ST, Zhang P, Wang X, Chen XL et al. EspR, a regulator of the ESX-1 secretion system in Mycobacterium tuberculosis, is directly regulated by the two-component systems MprAB and PhoPR. Microbiology 2015;161:477–489 [CrossRef][PubMed]
    [Google Scholar]
  72. Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 2010;11:94 [CrossRef][PubMed]
    [Google Scholar]
  73. Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq: a matter of depth. Genome Res 2011;21:2213–2223 [CrossRef][PubMed]
    [Google Scholar]
  74. Rue-Albrecht K, Magee DA, Killick KE, Nalpas NC, Gordon SV et al. Comparative functional genomics and the bovine macrophage response to strains of the mycobacterium genus. Front Immunol 2014;5:536 [CrossRef][PubMed]
    [Google Scholar]
  75. Rivero-Lezcano OM, González-Cortés C, Reyes-Ruvalcaba D, Diez-Tascón C. CCL20 is overexpressed in Mycobacterium tuberculosis-infected monocytes and inhibits the production of reactive oxygen species (ROS). Clin Exp Immunol 2010;162:289–297 [CrossRef][PubMed]
    [Google Scholar]
  76. Robinson CM, Jung JY, Nau GJ. Interferon-γ, tumor necrosis factor, and interleukin-18 cooperate to control growth of Mycobacterium tuberculosis in human macrophages. Cytokine 2012;60:233–241 [CrossRef][PubMed]
    [Google Scholar]
  77. Lee SH, Choi IH, Jeon YK, Park SJ, Lee HK et al. Association between the interleukin-18 promoter polymorphism and pulmonary tuberculosis in a Korean population. Int J Tuberc Lung Dis 2011;15:1246–1251 [CrossRef][PubMed]
    [Google Scholar]
  78. Han M, Yue J, Lian YY, Zhao YL, Wang HX et al. Relationship between single nucleotide polymorphism of interleukin-18 and susceptibility to pulmonary tuberculosis in the Chinese Han population. Microbiol Immunol 2011;55:388–393 [CrossRef][PubMed]
    [Google Scholar]
  79. Redford PS, Murray PJ, O'Garra A. The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunol 2011;4:261–270 [CrossRef][PubMed]
    [Google Scholar]
  80. Cheng Y, Huang C, Tsai HJ. Relationship of bovine NOS2 gene polymorphisms to the risk of bovine tuberculosis in Holstein cattle. J Vet Med Sci 2016;78:281–286 [CrossRef][PubMed]
    [Google Scholar]
  81. Kelly B, O'Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 2015;25:771–784 [CrossRef][PubMed]
    [Google Scholar]
  82. Lovewell RR, Sassetti CM, Vanderven BC. Chewing the fat: lipid metabolism and homeostasis during M. tuberculosis infection. Curr Opin Microbiol 2016;29:30–36 [CrossRef][PubMed]
    [Google Scholar]
  83. Collins AC, Cai H, Li T, Franco LH, Li XD et al. Cyclic GMP-AMP Synthase Is an Innate Immune DNA Sensor for Mycobacterium tuberculosis. Cell Host Microbe 2015;17:820–828 [CrossRef][PubMed]
    [Google Scholar]
  84. Dey B, Dey RJ, Cheung LS, Pokkali S, Guo H et al. A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat Med 2015;21:401–406 [CrossRef][PubMed]
    [Google Scholar]
  85. Wassermann R, Gulen MF, Sala C, Perin SG, Lou Y et al. Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1. Cell Host Microbe 2015;17:799–810 [CrossRef][PubMed]
    [Google Scholar]
  86. Watson RO, Bell SL, MacDuff DA, Kimmey JM, Diner EJ et al. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe 2015;17:811–819 [CrossRef][PubMed]
    [Google Scholar]
  87. Kato H, Oh SW, Fujita T. RIG-I-Like Receptors and Type I Interferonopathies. J Interferon Cytokine Res 2017;37:207–213 [CrossRef][PubMed]
    [Google Scholar]
  88. Keating SE, Baran M, Bowie AG. Cytosolic DNA sensors regulating type I interferon induction. Trends Immunol 2011;32:574–581 [CrossRef][PubMed]
    [Google Scholar]
  89. Zevini A, Olagnier D, Hiscott J. Crosstalk between Cytoplasmic RIG-I and STING Sensing Pathways. Trends Immunol 2017;38:194–205 [CrossRef][PubMed]
    [Google Scholar]
  90. Komuro A, Bamming D, Horvath CM. Negative regulation of cytoplasmic RNA-mediated antiviral signaling. Cytokine 2008;43:350–358 [CrossRef][PubMed]
    [Google Scholar]
  91. Yan N, Regalado-Magdos AD, Stiggelbout B, Lee-Kirsch MA, Lieberman J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol 2010;11:1005–1013 [CrossRef][PubMed]
    [Google Scholar]
  92. Chakrabarti A, Banerjee S, Franchi L, Loo YM, Gale M et al. RNase L activates the NLRP3 inflammasome during viral infections. Cell Host Microbe 2015;17:466–477 [CrossRef][PubMed]
    [Google Scholar]
  93. Ting JP, Duncan JA, Lei Y. How the noninflammasome NLRs function in the innate immune system. Science 2010;327:286–290 [CrossRef][PubMed]
    [Google Scholar]
  94. Viganò E, Diamond CE, Spreafico R, Balachander A, Sobota RM et al. Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat Commun 2015;6:8761 [CrossRef][PubMed]
    [Google Scholar]
  95. Schmid-Burgk JL, Gaidt MM, Schmidt T, Ebert TS, Bartok E et al. Caspase-4 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells. Eur J Immunol 2015;45:2911–2917 [CrossRef][PubMed]
    [Google Scholar]
  96. Beltrán PK, Gutiérrez-Ortega A, Puebla-Pérez AM, Gutiérrez-Pabello JA, Flores-Valdez MA et al. Identification of immunodominant antigens of Mycobacterium bovis by expression library immunization. Vet J 2011;190:181–183 [CrossRef][PubMed]
    [Google Scholar]
  97. Zheng J, Liu L, Wei C, Leng W, Yang J et al. A comprehensive proteomic analysis of Mycobacterium bovis bacillus Calmette-Guérin using high resolution Fourier transform mass spectrometry. J Proteomics 2012;77:357–371 [CrossRef][PubMed]
    [Google Scholar]
  98. Arbues A, Lugo-Villarino G, Neyrolles O, Guilhot C, Astarie-Dequeker C. Playing hide-and-seek with host macrophages through the use of mycobacterial cell envelope phthiocerol dimycocerosates and phenolic glycolipids. Front Cell Infect Microbiol 2014;4:173 [CrossRef][PubMed]
    [Google Scholar]
  99. Solans L, Uranga S, Aguilo N, Arnal C, Gomez AB et al. Hyper-attenuated MTBVAC erp mutant protects against tuberculosis in mice. Vaccine 2014;32:5192–5197 [CrossRef][PubMed]
    [Google Scholar]
  100. Spertini F, Audran R, Chakour R, Karoui O, Steiner-Monard V et al. Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: a randomised, double-blind, controlled phase I trial. Lancet Respir Med 2015;3:953–962 [CrossRef][PubMed]
    [Google Scholar]
  101. Walters SB, Dubnau E, Kolesnikova I, Laval F, Daffe M et al. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol 2006;60:312–330 [CrossRef][PubMed]
    [Google Scholar]
  102. Frigui W, Bottai D, Majlessi L, Monot M, Josselin E et al. Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog 2008;4:e33 [CrossRef][PubMed]
    [Google Scholar]
  103. Mendoza Lopez P, Golby P, Wooff E, Nunez Garcia J, Garcia Pelayo MC et al. Characterization of the transcriptional regulator Rv3124 of Mycobacterium tuberculosis identifies it as a positive regulator of molybdopterin biosynthesis and defines the functional consequences of a non-synonymous SNP in the Mycobacterium bovis BCG orthologue. Microbiology 2010;156:2112–2123 [CrossRef][PubMed]
    [Google Scholar]
  104. Soto CY, Menéndez MC, Pérez E, Samper S, Gómez AB et al. IS6110 mediates increased transcription of the phoP virulence gene in a multidrug-resistant clinical isolate responsible for tuberculosis outbreaks. J Clin Microbiol 2004;42:212–219 [CrossRef][PubMed]
    [Google Scholar]
  105. Simeone R, Sayes F, Song O, Gröschel MI, Brodin P et al. Cytosolic access of Mycobacterium tuberculosis: critical impact of phagosomal acidification control and demonstration of occurrence in vivo. PLoS Pathog 2015;11:e1004650 [CrossRef][PubMed]
    [Google Scholar]
  106. Westermann AJ, Barquist L, Vogel J. Resolving host-pathogen interactions by dual RNA-seq. PLoS Pathog 2017;13:e1006033 [CrossRef][PubMed]
    [Google Scholar]
  107. Bürckstümmer T, Baumann C, Blüml S, Dixit E, Dürnberger G et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 2009;10:266–272 [CrossRef][PubMed]
    [Google Scholar]
  108. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 2009;458:509–513 [CrossRef][PubMed]
    [Google Scholar]
  109. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 2010;11:997–1004 [CrossRef][PubMed]
    [Google Scholar]
  110. Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008;455:674–678 [CrossRef][PubMed]
    [Google Scholar]
  111. Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 2005;175:2851–2858 [CrossRef][PubMed]
    [Google Scholar]
  112. Connolly DJ, Bowie AG. The emerging role of human PYHIN proteins in innate immunity: implications for health and disease. Biochem Pharmacol 2014;92:405–414 [CrossRef][PubMed]
    [Google Scholar]
  113. Dorhoi A, Nouailles G, Jörg S, Hagens K, Heinemann E et al. Activation of the NLRP3 inflammasome by Mycobacterium tuberculosis is uncoupled from susceptibility to active tuberculosis. Eur J Immunol 2012;42:374–384 [CrossRef][PubMed]
    [Google Scholar]
  114. Wong KW, Jacobs WR. Critical role for NLRP3 in necrotic death triggered by Mycobacterium tuberculosis. Cell Microbiol 2011;13:1371–1384 [CrossRef][PubMed]
    [Google Scholar]
  115. Gröschel MI, Sayes F, Shin SJ, Frigui W, Pawlik A et al. Recombinant BCG expressing ESX-1 of Mycobacterium marinum combines low virulence with cytosolic immune signaling and improved TB protection. Cell Rep 2017;18:2752–2765 [CrossRef][PubMed]
    [Google Scholar]
  116. Mishra BB, Moura-Alves P, Sonawane A, Hacohen N, Griffiths G et al. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell Microbiol 2010;12:1046–1063 [CrossRef][PubMed]
    [Google Scholar]
  117. Maji A, Misra R, Kumar Mondal A, Kumar D, Bajaj D et al. Expression profiling of lymph nodes in tuberculosis patients reveal inflammatory milieu at site of infection. Sci Rep 2015;5:15214 [CrossRef][PubMed]
    [Google Scholar]
  118. Casson CN, Yu J, Reyes VM, Taschuk FO, Yadav A et al. Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens. Proc Natl Acad Sci USA 2015;112:6688–6693 [CrossRef][PubMed]
    [Google Scholar]
  119. Dutta NK, Illei PB, Jain SK, Karakousis PC. Characterization of a novel necrotic granuloma model of latent tuberculosis infection and reactivation in mice. Am J Pathol 2014;184:2045–2055 [CrossRef][PubMed]
    [Google Scholar]
  120. Wiens KE, Ernst JD. The mechanism for type I interferon induction by Mycobacterium tuberculosis is bacterial strain-dependent. PLoS Pathog 2016;12:e1005809 [CrossRef][PubMed]
    [Google Scholar]
  121. Bryant CE, Monie TP. Mice, men and the relatives: cross-species studies underpin innate immunity. Open Biol 2012;2:120015 [CrossRef][PubMed]
    [Google Scholar]
  122. Brunette RL, Young JM, Whitley DG, Brodsky IE, Malik HS et al. Extensive evolutionary and functional diversity among mammalian AIM2-like receptors. J Exp Med 2012;209:1969–1983 [CrossRef][PubMed]
    [Google Scholar]
  123. Eklund D, Welin A, Andersson H, Verma D, Söderkvist P et al. Human gene variants linked to enhanced NLRP3 activity limit intramacrophage growth of Mycobacterium tuberculosis. J Infect Dis 2014;209:749–753 [CrossRef][PubMed]
    [Google Scholar]
  124. Saïd-Salim B, Mostowy S, Kristof AS, Behr MA. Mutations in Mycobacterium tuberculosis Rv0444c, the gene encoding anti-SigK, explain high level expression of MPB70 and MPB83 in Mycobacterium bovis. Mol Microbiol 2006;62:1251–1263 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000163
Loading
/content/journal/mgen/10.1099/mgen.0.000163
Loading

Data & Media loading...

Supplementary File 1

PDF

Supplementary File 2

Supplementary File 3

Supplementary File 4

Supplementary File 5

Supplementary File 6

Supplementary File 7

Supplementary File 8

Supplementary File 9

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error