Transcriptional changes when Myxococcus xanthus preys on Escherichia coli suggest myxobacterial predators are constitutively toxic but regulate their feeding Open Access

Abstract

Predation is a fundamental ecological process, but within most microbial ecosystems the molecular mechanisms of predation remain poorly understood. We investigated transcriptome changes associated with the predation of Escherichia coli by the myxobacterium Myxococcus xanthus using mRNA sequencing. Exposure to pre-killed prey significantly altered expression of 1319 predator genes. However, the transcriptional response to living prey was minimal, with only 12 genes being significantly up-regulated. The genes most induced by prey presence (kdpA and kdpB, members of the kdp regulon) were confirmed by reverse transcriptase quantitative PCR to be regulated by osmotic shock in M. xanthus, suggesting indirect sensing of prey. However, the prey showed extensive transcriptome changes when co-cultured with predator, with 40 % of its genes (1534) showing significant changes in expression. Bacteriolytic M. xanthus culture supernatant and secreted outer membrane vesicles (OMVs) also induced changes in expression of large numbers of prey genes (598 and 461, respectively). Five metabolic pathways were significantly enriched in prey genes up-regulated on exposure to OMVs, supernatant and/or predatory cells, including those for ribosome and lipopolysaccharide production, suggesting that the prey cell wall and protein production are primary targets of the predator’s attack. Our data suggest a model of the myxobacterial predatome (genes and proteins associated with predation) in which the predator constitutively produces secretions which disable its prey whilst simultaneously generating a signal that prey is present. That signal then triggers a regulated feeding response in the predator.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000152
2018-01-18
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/2/mgen000152.html?itemId=/content/journal/mgen/10.1099/mgen.0.000152&mimeType=html&fmt=ahah

References

  1. Riley MA. Molecular mechanisms of bacteriocin evolution. Annu Rev Genet 1998; 32:255–278 [View Article][PubMed]
    [Google Scholar]
  2. Korp J, Vela Gurovic MS, Nett M. Antibiotics from predatory bacteria. Beilstein J Org Chem 2016; 12:594–607 [View Article][PubMed]
    [Google Scholar]
  3. Whitworth DE. Myxobacteria: Multicellularity and Differentiation Washington, DC: American Society for Microbiology; 2008
    [Google Scholar]
  4. Morgan AD, Maclean RC, Hillesland KL, Velicer GJ. Comparative analysis of Myxococcus predation on soil bacteria. Appl Environ Microbiol 2010; 76:6920–6927 [View Article][PubMed]
    [Google Scholar]
  5. Livingstone PG, Morphew RM, Whitworth DE. Myxobacteria are able to prey broadly upon clinically-relevant pathogens, exhibiting a prey range which cannot be explained by phylogeny. Front Microbiol 2017; 8:1593 [View Article][PubMed]
    [Google Scholar]
  6. Keane R, Berleman J. The predatory life cycle of Myxococcus xanthus . Microbiology 2016; 162:1–11 [View Article][PubMed]
    [Google Scholar]
  7. Bull CT, Shetty KG, Subbarao KV. Interactions between myxobacteria, plant pathogenic fungi, and biocontrol agents. Plant Disease 2002; 86:889–896 [View Article]
    [Google Scholar]
  8. Pérez J, Moraleda-Muñoz A, Marcos-Torres FJ, Muñoz-Dorado J. Bacterial predation: 75 years and counting!. Environ Microbiol 2016; 18:766–779 [View Article][PubMed]
    [Google Scholar]
  9. Muñoz-Dorado J, Marcos-Torres FJ, García-Bravo E, Moraleda-Muñoz A, Pérez J. Myxobacteria: moving, killing, feeding, and surviving together. Front Microbiol 2016; 7:781 [View Article][PubMed]
    [Google Scholar]
  10. Berleman JE, Kirby JR. Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev 2009; 33:942–957 [View Article][PubMed]
    [Google Scholar]
  11. Evans AG, Davey HM, Cookson A, Currinn H, Cooke-Fox G et al. Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo. Microbiology 2012; 158:2742–2752 [View Article][PubMed]
    [Google Scholar]
  12. Rosenberg E, Keller KH, Dworkin M. Cell density-dependent growth of Myxococcus xanthus on casein. J Bacteriol 1977; 129:770–777[PubMed]
    [Google Scholar]
  13. Whitworth DE, Slade SE, Mironas A. Composition of distinct sub-proteomes in Myxococcus xanthus: metabolic cost and amino acid availability. Amino Acids 2015; 47:2521–2531 [View Article][PubMed]
    [Google Scholar]
  14. Berleman JE, Allen S, Danielewicz MA, Remis JP, Gorur A et al. The lethal cargo of Myxococcus xanthus outer membrane vesicles. Front Microbiol 2014; 5:474 [View Article][PubMed]
    [Google Scholar]
  15. Findlay BL. The chemical ecology of predatory soil bacteria. ACS Chem Biol 2016; 11:1502–1510 [View Article][PubMed]
    [Google Scholar]
  16. Pasternak Z, Pietrokovski S, Rotem O, Gophna U, Lurie-Weinberger MN et al. By their genes ye shall know them: genomic signatures of predatory bacteria. Isme J 2013; 7:756–769 [View Article][PubMed]
    [Google Scholar]
  17. Karunker I, Rotem O, Dori-Bachash M, Jurkevitch E, Sorek R. A global transcriptional switch between the attack and growth forms of Bdellovibrio bacteriovorus . PLoS One 2013; 8:e61850 [View Article][PubMed]
    [Google Scholar]
  18. Tan KH, Seers CA, Dashper SG, Mitchell HL, Pyke JS et al. Porphyromonas gingivalis and Treponema denticola exhibit metabolic symbioses. PLoS Pathog 2014; 10:e1003955 [View Article][PubMed]
    [Google Scholar]
  19. Pérez J, Buchanan A, Mellbye B, Ferrell R, Chang JH et al. Interactions of Nitrosomonas europaea and Nitrobacter winogradskyi grown in co-culture. Arch Microbiol 2015; 197:79–89 [View Article][PubMed]
    [Google Scholar]
  20. Wang HK, Ng YK, Koh E, Yao L, Chien AS et al. RNA-Seq reveals transcriptomic interactions of Bacillus subtilis natto and Bifidobacterium animalis subsp. lactis in whole soybean solid-state co-fermentation. Food Microbiol 2015; 51:25–32 [View Article][PubMed]
    [Google Scholar]
  21. Kaiser D. Social gliding is correlated with the presence of pili in Myxococcus xanthus . Proc Natl Acad Sci USA 1979; 76:5952–5956 [View Article][PubMed]
    [Google Scholar]
  22. Huws SA, Edwards JE, Creevey CJ, Rees Stevens P, Lin W et al. Temporal dynamics of the metabolically active rumen bacteria colonizing fresh perennial ryegrass. FEMS Microbiol Ecol 2016; 92:fiv137 [View Article][PubMed]
    [Google Scholar]
  23. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26:139–140 [View Article][PubMed]
    [Google Scholar]
  24. Huang D, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4:44–57 [View Article][PubMed]
    [Google Scholar]
  25. Huang D, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37:1–13 [View Article][PubMed]
    [Google Scholar]
  26. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R et al. Circos: an information aesthetic for comparative genomics. Genome Res 2009; 19:1639–1645 [View Article][PubMed]
    [Google Scholar]
  27. Dhillon BK, Chiu TA, Laird MR, Langille MG, Brinkman FS. IslandViewer update: Improved genomic island discovery and visualization. Nucleic Acids Res 2013; 41:W129–W132 [View Article][PubMed]
    [Google Scholar]
  28. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 2017; 45:W36–W41 [View Article][PubMed]
    [Google Scholar]
  29. Ortet P, de Luca G, Whitworth DE, Barakat M. P2TF: a comprehensive resource for analysis of prokaryotic transcription factors. BMC Genomics 2012; 13:628 [View Article][PubMed]
    [Google Scholar]
  30. Ortet P, Whitworth DE, Santaella C, Achouak W, Barakat M. P2CS: updates of the prokaryotic two-component systems database. Nucleic Acids Res 2015; 43:D536–D541 [View Article][PubMed]
    [Google Scholar]
  31. Ballal A, Basu B, Apte SK. The Kdp-ATPase system and its regulation. J Biosci 2007; 32:559–568 [View Article][PubMed]
    [Google Scholar]
  32. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017; 45:D353–D361 [View Article][PubMed]
    [Google Scholar]
  33. Whitworth DE. Myxobacterial vesicles death at a distance?. Adv Appl Microbiol 2011; 75:1–31 [View Article][PubMed]
    [Google Scholar]
  34. Wang Z, Kadouri DE, Wu M. Genomic insights into an obligate epibiotic bacterial predator: Micavibrio aeruginosavorus ARL-13. BMC Genomics 2011; 12:453 [View Article][PubMed]
    [Google Scholar]
  35. Berleman JE, Scott J, Chumley T, Kirby JR. Predataxis behavior in Myxococcus xanthus . Proc Natl Acad Sci USA 2008; 105:17127–17132 [View Article][PubMed]
    [Google Scholar]
  36. Whitworth DE. Genome-wide analysis of myxobacterial two-component systems: genome relatedness and evolutionary changes. BMC Genomics 2015; 16:780 [View Article][PubMed]
    [Google Scholar]
  37. Lloyd DG, Whitworth DE. The Myxobacterium Myxococcus xanthus can sense and respond to the quorum signals secreted by potential prey organisms. Front Microbiol 2017; 8:439 [View Article][PubMed]
    [Google Scholar]
  38. Strauch E, Schwudke D, Linscheid M. Predatory mechanisms of Bdellovibrio and like organisms. Future Microbiol 2007; 2:63–73 [View Article][PubMed]
    [Google Scholar]
  39. Kimura Y, Kawasaki S, Yoshimoto H, Takegawa K. Glycine betaine biosynthesized from glycine provides an osmolyte for cell growth and spore germination during osmotic stress in Myxococcus xanthus . J Bacteriol 2010; 192:1467–1470 [View Article][PubMed]
    [Google Scholar]
  40. Gries CM, Bose JL, Nuxoll AS, Fey PD, Bayles KW. The Ktr potassium transport system in Staphylococcus aureus and its role in cell physiology, antimicrobial resistance and pathogenesis. Mol Microbiol 2013; 89:760–773 [View Article][PubMed]
    [Google Scholar]
  41. Whitworth DE. Two-component regulatory systems in prokaryotes. In Filloux A. (editor) Bacterial Regulatory Networks Caister, UK: Horizon Scientific Press; 2011
    [Google Scholar]
  42. Bretscher AP, Kaiser D. Nutrition of Myxococcus xanthus, a fruiting myxobacterium. J Bacteriol 1978; 133:763–768[PubMed]
    [Google Scholar]
  43. Wiese A, Brandenburg K, Ulmer AJ, Seydel U, Müller-Loennies S. The dual role of lipopolysaccharide as effector and target molecule. Biol Chem 1999; 380:767–784 [View Article][PubMed]
    [Google Scholar]
  44. Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 2014; 12:35–48 [View Article][PubMed]
    [Google Scholar]
  45. Xiao Y, Gerth K, Müller R, Wall D. Myxobacterium-produced antibiotic TA (myxovirescin) inhibits type II signal peptidase. Antimicrob Agents Chemother 2012; 56:2014–2021 [View Article][PubMed]
    [Google Scholar]
  46. Gerth K, Jansen R, Reifenstahl G, Höfle G, Irschik H et al. The myxalamids, new antibiotics from Myxococcus xanthus (Myxobacterales). I. Production, physico-chemical and biological properties, and mechanism of action. J Antibiot 1983; 36:1150–1156 [View Article][PubMed]
    [Google Scholar]
  47. Pan H, He X, Lux R, Luan J, Shi W. Killing of Escherichia coli by Myxococcus xanthus in aqueous environments requires exopolysaccharide-dependent physical contact. Microb Ecol 2013; 66:630–638 [View Article][PubMed]
    [Google Scholar]
  48. Zee PC, Liu J, Velicer GJ. Pervasive, yet idiosyncratic, epistatic pleiotropy during adaptation in a behaviourally complex microbe. J Evol Biol 2017; 30:257–269 [View Article][PubMed]
    [Google Scholar]
  49. Mendes-Soares H, Velicer GJ. Decomposing predation: testing for parameters that correlate with predatory performance by a social bacterium. Microb Ecol 2013; 65:415–423 [View Article][PubMed]
    [Google Scholar]
  50. Diodati ME, Gill RE, Plamann L, Singer M. Initiation and early developmental events. In Whitworth DE. (editor) Myxobacteria: Multicellularity and Differentiation Washington, DC: American Society for Microbiology; 2008 pp. 43–76
    [Google Scholar]
  51. Blackledge TA, Kuntner M, Agnarsson I. The form and function of spider orb webs: evolution from silk to ecosystems. Advances in Insect Physiology 2011; 41:175–262
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000152
Loading
/content/journal/mgen/10.1099/mgen.0.000152
Loading

Data & Media loading...

Supplements

Supplementary File 1

Supplementary File 2

PDF

Most cited Most Cited RSS feed