1887

Abstract

Most Staphylococcus aureus isolates can cause invasive disease given the right circumstances, but it is unknown if some isolates are more likely to cause severe infections than others. S. aureus bloodstream isolates from 120 patients with definite infective endocarditis and 121 with S. aureus bacteraemia without infective endocarditis underwent whole-genome sequencing. Genome-wide association analysis was performed using a variety of bioinformatics approaches including SNP analysis, accessory genome analysis and k-mer based analysis. Core and accessory genome analyses found no association with either of the two clinical groups. In this study, the genome sequences of S. aureus bloodstream isolates did not discriminate between bacteraemia and infective endocarditis. Based on our study and the current literature, it is not convincing that a specific S. aureus genotype is clearly associated to infective endocarditis in patients with S. aureus bacteraemia.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000138
2017-11-20
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/mgen/3/11/mgen000138.html?itemId=/content/journal/mgen/10.1099/mgen.0.000138&mimeType=html&fmt=ahah

References

  1. Fowler VG, Li J, Corey GR, Boley J, Marr KA et al. Role of echocardiography in evaluation of patients with Staphylococcus aureus bacteremia: experience in 103 patients. J Am Coll Cardiol 1997;30:1072–1078 [CrossRef][PubMed]
    [Google Scholar]
  2. Rasmussen RV, Høst U, Arpi M, Hassager C, Johansen HK et al. Prevalence of infective endocarditis in patients with Staphylococcus aureus bacteraemia: the value of screening with echocardiography. Eur J Echocardiogr 2011;12:414–420 [CrossRef][PubMed]
    [Google Scholar]
  3. Peacock SJ, Moore CE, Justice A, Kantzanou M, Story L et al. Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect Immun 2002;70:4987–4996 [CrossRef][PubMed]
    [Google Scholar]
  4. Fowler VG, Nelson CL, Mcintyre LM, Kreiswirth BN, Monk A et al. Potential associations between hematogenous complications and bacterial genotype in Staphylococcus aureus infection. J Infect Dis 2007;196:738–747 [CrossRef][PubMed]
    [Google Scholar]
  5. Feil EJ, Cooper JE, Grundmann H, Robinson DA, Enright MC et al. How clonal is Staphylococcus aureus?. J Bacteriol 2003;185:3307–3316 [CrossRef][PubMed]
    [Google Scholar]
  6. Rasmussen G, Monecke S, Ehricht R, Söderquist B. Prevalence of clonal complexes and virulence genes among commensal and invasive Staphylococcus aureus isolates in Sweden. PLoS One 2013;8:e77477 [CrossRef][PubMed]
    [Google Scholar]
  7. Nienaber JJ, Sharma Kuinkel BK, Clarke-Pearson M, Lamlertthon S, Park L et al. Methicillin-susceptible Staphylococcus aureus endocarditis isolates are associated with clonal complex 30 genotype and a distinct repertoire of enterotoxins and adhesins. J Infect Dis 2011;204:704–713 [CrossRef][PubMed]
    [Google Scholar]
  8. Nethercott C, Mabbett AN, Totsika M, Peters P, Ortiz JC et al. Molecular characterization of endocarditis-associated Staphylococcus aureus. J Clin Microbiol 2013;51:2131–2138 [CrossRef][PubMed]
    [Google Scholar]
  9. Lalani T, Federspiel JJ, Boucher HW, Rude TH, Bae IG et al. Associations between the genotypes of Staphylococcus aureus bloodstream isolates and clinical characteristics and outcomes of bacteremic patients. J Clin Microbiol 2008;46:2890–2896 [CrossRef][PubMed]
    [Google Scholar]
  10. Tristan A, Rasigade JP, Ruizendaal E, Laurent F, Bes M et al. Rise of CC398 lineage of Staphylococcus aureus among Infective endocarditis isolates revealed by two consecutive population-based studies in France. PLoS One 2012;7:e51172 [CrossRef][PubMed]
    [Google Scholar]
  11. Bouchiat C, Moreau K, Devillard S, Rasigade JP, Mosnier A et al. Staphylococcus aureus infective endocarditis versus bacteremia strains: Subtle genetic differences at stake. Infect Genet Evol 2015;36:524–530 [CrossRef][PubMed]
    [Google Scholar]
  12. Laabei M, Recker M, Rudkin JK, Aldeljawi M, Gulay Z et al. Predicting the virulence of MRSA from its genome sequence. Genome Res 2014;24:839–849 [CrossRef][PubMed]
    [Google Scholar]
  13. Recker M, Laabei M, Toleman MS, Reuter S, Saunderson RB et al. Clonal differences in Staphylococcus aureus bacteraemia-associated mortality. Nat Microbiol 2017;2:1381–1388 [CrossRef][PubMed]
    [Google Scholar]
  14. Sheppard SK, Didelot X, Meric G, Torralbo A, Jolley KA et al. Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proc Natl Acad Sci USA 2013;110:11923–11927 [CrossRef][PubMed]
    [Google Scholar]
  15. Earle SG, Wu CH, Charlesworth J, Stoesser N, Gordon NC et al. Identifying lineage effects when controlling for population structure improves power in bacterial association studies. Nat Microbiol 2016;1:16041 [CrossRef][PubMed]
    [Google Scholar]
  16. Lees JA, Vehkala M, Välimäki N, Harris SR, Chewapreecha C et al. Sequence element enrichment analysis to determine the genetic basis of bacterial phenotypes. Nat Commun 2016;7:12797 [CrossRef][PubMed]
    [Google Scholar]
  17. Suzuki M, Shibayama K, Yahara K. A genome-wide association study identifies a horizontally transferred bacterial surface adhesin gene associated with antimicrobial resistant strains. Sci Rep 2016;6:37811 [CrossRef][PubMed]
    [Google Scholar]
  18. Chewapreecha C, Marttinen P, Croucher NJ, Salter SJ, Harris SR et al. Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. PLoS Genet 2014;10:e1004547 [CrossRef][PubMed]
    [Google Scholar]
  19. Earle SG, Wu CH, Charlesworth J, Stoesser N, Gordon NC et al. Identifying lineage effects when controlling for population structure improves power in bacterial association studies. Nat Microbiol 2016;1:16041 [CrossRef][PubMed]
    [Google Scholar]
  20. Buchholtz K, Larsen CT, Hassager C, Bruun NE. In infectious endocarditis patients mortality is highly related to kidney function at time of diagnosis: a prospective observational cohort study of 231 cases. Eur J Intern Med 2009;20:407–410 [CrossRef][PubMed]
    [Google Scholar]
  21. Li JS, Sexton DJ, Mick N, Nettles R, Fowler VG et al. Proposed modifications to the duke criteria for the diagnosis of infective endocarditis. Clin Infect Dis 2000;30:633–638 [CrossRef][PubMed]
    [Google Scholar]
  22. Friedman ND, Kaye KS, Stout JE, Mcgarry SA, Trivette SL et al. Health care-associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med 2002;137:791–797 [CrossRef][PubMed]
    [Google Scholar]
  23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  24. Stegger M, Driebe EM, Roe C, Lemmer D, Bowers JR et al. Genome sequence of Staphylococcus aureus strain CA-347, a USA600 methicillin-resistant isolate. Genome Announc 2013;1:e00517-13 [CrossRef][PubMed]
    [Google Scholar]
  25. Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 2009;25:1754–1760 [CrossRef][PubMed]
    [Google Scholar]
  26. Delcher AL, Phillippy A, Carlton J, Salzberg SL. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 2002;30:2478–2483 [CrossRef][PubMed]
    [Google Scholar]
  27. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004;5:R12 [CrossRef][PubMed]
    [Google Scholar]
  28. Sahl JW, Lemmer D, Travis J, Schupp JM, Gillece JD et al. NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microb Genom 2016;2:e000074 [CrossRef][PubMed]
    [Google Scholar]
  29. Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 2010;5:e9490 [CrossRef][PubMed]
    [Google Scholar]
  30. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012;28:1647–1649 [CrossRef][PubMed]
    [Google Scholar]
  31. Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007;23:127–128 [CrossRef][PubMed]
    [Google Scholar]
  32. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016;44:W242–W245 [CrossRef][PubMed]
    [Google Scholar]
  33. Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 2010;11:94 [CrossRef][PubMed]
    [Google Scholar]
  34. Jombart T, Ahmed I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 2011;27:3070–3071 [CrossRef][PubMed]
    [Google Scholar]
  35. Reumerman RA, Tucker NP, Herron PR, Hoskisson PA, Sangal V. Tool for rapid annotation of microbial SNPs (TRAMS): a simple program for rapid annotation of genomic variation in prokaryotes. Antonie van Leeuwenhoek 2013;104:431–434 [CrossRef][PubMed]
    [Google Scholar]
  36. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  37. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015;31:3691–3693 [CrossRef][PubMed]
    [Google Scholar]
  38. Tange O. GNU parallel - The command-line power tool. USENIX Mag 2011;36:42–47
    [Google Scholar]
  39. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 2014;52:1501–1510 [CrossRef][PubMed]
    [Google Scholar]
  40. Wickham H. ggplot2: Elegant Graphics for Data Analysis New York: Springer-Verlag; 2009
    [Google Scholar]
  41. Chattopadhyay S, Weissman SJ, Minin VN, Russo TA, Dykhuizen DE et al. High frequency of hotspot mutations in core genes of Escherichia coli due to short-term positive selection. Proc Natl Acad Sci USA 2009;106:12412–12417 [CrossRef][PubMed]
    [Google Scholar]
  42. Rieg S, Jonas D, Kaasch AJ, Porzelius C, Peyerl-Hoffmann G et al. Microarray-based genotyping and clinical outcomes of Staphylococcus aureus bloodstream infection: an exploratory study. PLoS One 2013;8:e71259 [CrossRef][PubMed]
    [Google Scholar]
  43. Young BC, Golubchik T, Batty EM, Fung R, Larner-Svensson H et al. Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease. Proc Natl Acad Sci USA 2012;109:4550–4555 [CrossRef][PubMed]
    [Google Scholar]
  44. Oestergaard LB, Christiansen MN, Schmiegelow MD, Skov RL, Andersen PS et al. Familial clustering of Staphylococcus aureus bacteremia in first-degree relatives. Ann Intern Med 2016;165:390–398 [CrossRef]
    [Google Scholar]
  45. Vollmer T, Kleesiek K, Dreier J. Lipopolysaccharide-binding protein (LBP) gene polymorphisms: rapid genotyping by real-time PCR and association with infective endocarditis. Clin Biochem 2009;42:1413–1419 [CrossRef][PubMed]
    [Google Scholar]
  46. Bustamante J, Tamayo E, Flórez S, Telleria JJ, Bustamante E et al. [Toll-like receptor 2 R753Q polymorphisms are associated with an increased risk of infective endocarditis]. Rev Esp Cardiol 2011;64:1056–1059 [CrossRef][PubMed]
    [Google Scholar]
  47. Weinstock M, Grimm I, Dreier J, Knabbe C, Vollmer T. Genetic variants in genes of the inflammatory response in association with infective endocarditis. PLoS One 2014;9:e110151 [CrossRef][PubMed]
    [Google Scholar]
  48. Golovkin AS, Ponasenko AV, Yuzhalin AE, Salakhov RR, Khutornaya MV et al. An association between single nucleotide polymorphisms within TLR and TREM-1 genes and infective endocarditis. Cytokine 2015;71:16–21 [CrossRef][PubMed]
    [Google Scholar]
  49. Driebe EM, Sahl JW, Roe C, Bowers JR, Schupp JM et al. Using whole genome analysis to examine recombination across diverse sequence types of Staphylococcus aureus. PLoS One 2015;10:e0130955 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000138
Loading
/content/journal/mgen/10.1099/mgen.0.000138
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error