1887

Abstract

Yersinia pseudotuberculosis is a Gram-negative intestinal pathogen of humans and has been responsible for several nationwide gastrointestinal outbreaks. Large-scale population genomic studies have been performed on the other human pathogenic species of the genus Yersinia, Yersinia pestis and Yersinia enterocolitica allowing a high-resolution understanding of the ecology, evolution and dissemination of these pathogens. However, to date no purpose-designed large-scale global population genomic analysis of Y. pseudotuberculosis has been performed. Here we present analyses of the genomes of 134 strains of Y. pseudotuberculosis isolated from around the world, from multiple ecosystems since the 1960s. Our data display a phylogeographic split within the population, with an Asian ancestry and subsequent dispersal of successful clonal lineages into Europe and the rest of the world. These lineages can be differentiated by CRISPR cluster arrays, and we show that the lineages are limited with respect to inter-lineage genetic exchange. This restriction of genetic exchange maintains the discrete lineage structure in the population despite co-existence of lineages for thousands of years in multiple countries. Our data highlights how CRISPR can be informative of the evolutionary trajectory of bacterial lineages, and merits further study across bacteria.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000133
2017-09-18
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/mgen/3/10/mgen000133.html?itemId=/content/journal/mgen/10.1099/mgen.0.000133&mimeType=html&fmt=ahah

References

  1. Mcnally A, Thomson NR, Reuter S, Wren BW. 'Add, stir and reduce': Yersinia spp. as model bacteria for pathogen evolution. Nat Rev Microbiol 2016;14:177–190 [CrossRef][PubMed]
    [Google Scholar]
  2. Han TH, Paik IK, Kim SJ. Molecular relatedness between isolates Yersinia pseudotuberculosis from a patient and an isolate from mountain spring water. J Korean Med Sci 2003;18:425–428 [CrossRef][PubMed]
    [Google Scholar]
  3. Behra GD, Garg DN, Batra HV, Chandiramani NK. Isolation of Yersinia pseudotuberculosis from bovine calves with enteric disorders. Microbiol Immunol 1984;28:237–241 [CrossRef][PubMed]
    [Google Scholar]
  4. Savin C, Martin L, Bouchier C, Filali S, Chenau J et al. The Yersinia pseudotuberculosis complex: characterization and delineation of a new species, Yersinia wautersii. Int J Med Microbiol 2014;304:452–463 [CrossRef][PubMed]
    [Google Scholar]
  5. Chiles MC et al. Pathogenic Yersinia pseudotuberculosis and Yersinia enterocolitica DNA is detected in bowel and mesenteric nodes from Crohn’s disease patients. Mod. Pathol 2002;15:518
    [Google Scholar]
  6. Naktin J, Beavis KG. Yersinia enterocolitica and Yersinia pseudotuberculosis. Clin Lab Med 1999;19:523–536[PubMed]
    [Google Scholar]
  7. Nuorti JP, Niskanen T, Hallanvuo S, Mikkola J, Kela E et al. A widespread outbreak of Yersinia pseudotuberculosis O:3 infection from iceberg lettuce. J Infect Dis 2004;189:766–774 [CrossRef][PubMed]
    [Google Scholar]
  8. Williamson DA, Baines SL, Carter GP, da Silva AG, Ren X et al. Genomic insights into a sustained national outbreak of Yersinia pseudotuberculosis. Genome Biol Evol 2016;8:evw28514 [CrossRef][PubMed]
    [Google Scholar]
  9. Bogdanovich T, Carniel E, Fukushima H, Skurnik M. Use of O-antigen gene cluster-specific PCRs for the identification and O-genotyping of Yersinia pseudotuberculosis and Yersinia pestis. J Clin Microbiol 2003;41:5103–5112 [CrossRef][PubMed]
    [Google Scholar]
  10. Laukkanen-Ninios R, Didelot X, Jolley KA, Morelli G, Sangal V et al. Population structure of the Yersinia pseudotuberculosis complex according to multilocus sequence typing. Environ Microbiol 2011;13:3114–3127 [CrossRef][PubMed]
    [Google Scholar]
  11. Koskela KA, Mattinen L, Kalin-Mänttäri L, Vergnaud G, Gorgé O et al. Generation of a CRISPR database for Yersinia pseudotuberculosis complex and role of CRISPR-based immunity in conjugation. Environ Microbiol 2015;17:4306–4321 [CrossRef][PubMed]
    [Google Scholar]
  12. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 2015;13:722–736 [CrossRef][PubMed]
    [Google Scholar]
  13. Morelli G, Song Y, Mazzoni CJ, Eppinger M, Roumagnac P et al. Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat Genet 2010;42:1140–1143 [CrossRef][PubMed]
    [Google Scholar]
  14. Reuter S, Corander J, De Been M, Harris S, Cheng L et al. Directional gene flow and ecological separation in Yersinia enterocolitica. Microb Genom 2015;1:e000030 [CrossRef][PubMed]
    [Google Scholar]
  15. Reuter S, Connor TR, Barquist L, Walker D, Feltwell T et al. Parallel independent evolution of pathogenicity within the genus Yersinia. Proc Natl Acad Sci USA 2014;111:6768–6773 [CrossRef][PubMed]
    [Google Scholar]
  16. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008;18:821–829 [CrossRef][PubMed]
    [Google Scholar]
  17. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  18. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 2014;15:524 [CrossRef][PubMed]
    [Google Scholar]
  19. Stamatakis A, Ludwig T, Meier H. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 2005;21:456–463 [CrossRef][PubMed]
    [Google Scholar]
  20. Letunic I, Bork P. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 2011;39:W475–W478 [CrossRef][PubMed]
    [Google Scholar]
  21. Sahl JW, Caporaso JG, Rasko DA, Keim P. The large-scale blast score ratio (LS-BSR) pipeline: a method to rapidly compare genetic content between bacterial genomes. PeerJ 2014;2:e332 [CrossRef][PubMed]
    [Google Scholar]
  22. Pessia A, Grad Y, Cobey S, Puranen JS, Corander J. K-Pax2: Bayesian identification of cluster-defining amino acid positions in large sequence datasets. Microb Genom 2015;1:e000025 [CrossRef][PubMed]
    [Google Scholar]
  23. Marttinen P, Hanage WP, Croucher NJ, Connor TR, Harris SR et al. Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res 2012;40:e6 [CrossRef][PubMed]
    [Google Scholar]
  24. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH et al. BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput Biol 2014;10:e1003537 [CrossRef][PubMed]
    [Google Scholar]
  25. Batzilla J, Höper D, Antonenka U, Heesemann J, Rakin A. Complete genome sequence of Yersinia enterocolitica subsp. palearctica serogroup O:3. J Bacteriol 2011;193:2067 [CrossRef][PubMed]
    [Google Scholar]
  26. Cui Y, Yu C, Yan Y, Li D, Li Y et al. Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proc Natl Acad Sci USA 2013;110:577–582 [CrossRef][PubMed]
    [Google Scholar]
  27. Eppinger M, Rosovitz MJ, Fricke WF, Rasko DA, Kokorina G et al. The complete genome sequence of Yersinia pseudotuberculosis IP31758, the causative agent of Far East scarlet-like fever. PLoS Genet 2007;3:e142 [CrossRef][PubMed]
    [Google Scholar]
  28. Dearlove BL, Cody AJ, Pascoe B, Méric G, Wilson DJ et al. Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections. Isme J 2016;10:721–729 [CrossRef][PubMed]
    [Google Scholar]
  29. Sheppard SK, Mccarthy ND, Falush D, Maiden MC. Convergence of Campylobacter species: implications for bacterial evolution. Science 2008;320:237–239 [CrossRef][PubMed]
    [Google Scholar]
  30. van Belkum A, Soriaga LB, Lafave MC, Akella S, Veyrieras JB et al. Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa. MBio 2015;6:e01796-15 [CrossRef][PubMed]
    [Google Scholar]
  31. Yang C, Li P, Su W, Li H, Liu H et al. Polymorphism of CRISPR shows separated natural groupings of Shigella subtypes and evidence of horizontal transfer of CRISPR. RNA Biol 2015;12:1109–1120 [CrossRef][PubMed]
    [Google Scholar]
  32. Kupczok A, Landan G, Dagan T. The Contribution of genetic recombination to CRISPR array evolution. Genome Biol Evol 2015;7:1925–1939 [CrossRef][PubMed]
    [Google Scholar]
  33. Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A et al. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 1999;96:14043–14048 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000133
Loading
/content/journal/mgen/10.1099/mgen.0.000133
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Supplementary File 2

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error