1887

Abstract

Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen with several clones being frequently associated with outbreaks in hospital settings. ST395 is among these so-called ‘international’ clones. We aimed here to define the biological features that could have helped the implantation and spread of the clone ST395 in hospital settings. The complete genome of a multidrug resistant index isolate (DHS01) of a large hospital outbreak was analysed. We identified DHS01-specific genetic elements, among which were identified those shared with a panel of six independent ST395 isolates responsible for outbreaks in other hospitals. DHS01 has the fifth largest chromosome of the species (7.1 Mbp), with most of its 1555 accessory genes borne by either genomic islands (GIs, n=48) or integrative and conjugative elements (ICEs, n=5). DHS01 is multidrug resistant mostly due to chromosomal mutations. It displayed signatures of adaptation to chronic infection in part due to the loss of a 131 kbp chromosomal fragment. Four GIs were specific to the clone ST395 and contained genes involved in metabolism (GI-4), in virulence (GI-6) and in resistance to copper (GI-7). GI-7 harboured an array of six copper transporters and was shared with non-pathogenic Pseudomonas sp. retrieved from copper-contaminated environments. Copper resistance was confirmed phenotypically in all other ST395 isolates and possibly accounted for the spreading capability of the clone in hospital outbreaks, where water networks have been incriminated. This suggests that genes transferred from copper-polluted environments may have favoured the implantation and spread of the international clone P. aeruginosa ST395 in hospital settings.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000129
2017-06-08
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/mgen/3/10/mgen000129.html?itemId=/content/journal/mgen/10.1099/mgen.0.000129&mimeType=html&fmt=ahah

References

  1. Morrison AJ, Wenzel RP. Epidemiology of Infections due to Pseudomonas aeruginosa . Clin Infect Dis 1984; 6:S627–S642 [View Article]
    [Google Scholar]
  2. Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 2007; 67:351–368 [View Article][PubMed]
    [Google Scholar]
  3. Oliver A, Mulet X, López-Causapé C, Juan C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat 2015; 21-22:41–59 [View Article][PubMed]
    [Google Scholar]
  4. Cholley P, Thouverez M, Hocquet D, van der Mee-Marquet N, Talon D et al. Most multidrug-resistant Pseudomonas aeruginosa isolates from hospitals in Eastern France belong to a few clonal types. J Clin Microbiol 2011; 49:2578–2583 [View Article][PubMed]
    [Google Scholar]
  5. Quick J, Cumley N, Wearn CM, Niebel M, Constantinidou C et al. Seeking the source of Pseudomonas aeruginosa infections in a recently opened hospital: an observational study using whole-genome sequencing. BMJ Open 2014; 4:e006278 [View Article][PubMed]
    [Google Scholar]
  6. Bertrand X, Bailly P, Blasco G, Balvay P, Boillot A et al. Large outbreak in a surgical intensive care unit of colonization or infection with Pseudomonas aeruginosa that overexpressed an active efflux pump. Clin Infect Dis 2000; 31:e9e14 [View Article][PubMed]
    [Google Scholar]
  7. Teixeira P, Tacão M, Alves A, Henriques I. Antibiotic and metal resistance in a ST395 Pseudomonas aeruginosa environmental isolate: a genomics approach. Mar Pollut Bull 2016; 110:75–81 [View Article][PubMed]
    [Google Scholar]
  8. Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM et al. Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci USA 2008; 105:3100–3105 [View Article][PubMed]
    [Google Scholar]
  9. Wolfgang MC, Kulasekara BR, Liang X, Boyd D, Wu K et al. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa . Proc Natl Acad Sci USA 2003; 100:8484–8489 [View Article][PubMed]
    [Google Scholar]
  10. Alonso A, Sánchez P, Martínez JL. Environmental selection of antibiotic resistance genes. Environ Microbiol 2001; 3:1–9 [View Article][PubMed]
    [Google Scholar]
  11. Eid J, Fehr A, Gray J, Luong K, Lyle J et al. Real-time DNA sequencing from single polymerase molecules. Science 2009; 323:133–138 [View Article][PubMed]
    [Google Scholar]
  12. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article][PubMed]
    [Google Scholar]
  13. Brittnacher MJ, Fong C, Hayden HS, Jacobs MA, Radey M et al. PGAT: a multistrain analysis resource for microbial genomes. Bioinformatics 2011; 27:2429–2430 [View Article][PubMed]
    [Google Scholar]
  14. Valot B, Guyeux C, Rolland JY, Mazouzi K, Bertrand X et al. What it takes to be a Pseudomonas aeruginosa? The core genome of the opportunistic pathogen updated. PLoS One 2015; 10:e0126468 [View Article][PubMed]
    [Google Scholar]
  15. Talon D, Dupont MJ, Lesne J, Thouverez M, Michel-Briand Y. Pulsed-field gel electrophoresis as an epidemiological tool for clonal identification of Aeromonas hydrophila . J Appl Bacteriol 1996; 80:277–282 [View Article][PubMed]
    [Google Scholar]
  16. Delcher AL, Phillippy A, Carlton J, Salzberg SL. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 2002; 30:2478–2483 [View Article][PubMed]
    [Google Scholar]
  17. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article][PubMed]
    [Google Scholar]
  18. Dhillon BK, Chiu TA, Laird MR, Langille MG, Brinkman FS. IslandViewer update: improved genomic island discovery and visualization. Nucleic Acids Res 2013; 41:W129–W132 [View Article][PubMed]
    [Google Scholar]
  19. Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007; 35:W52–W57 [View Article][PubMed]
    [Google Scholar]
  20. Hocquet D, Llanes C, Thouverez M, Kulasekara HD, Bertrand X et al. Evidence for induction of integron-based antibiotic resistance by the SOS response in a clinical setting. PLoS Pathog 2012; 8:e1002778 [View Article][PubMed]
    [Google Scholar]
  21. European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, version 7.1. Basel: ESCMID; 2017 http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_7.1_Breakpoint_Tables.pdf
  22. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article][PubMed]
    [Google Scholar]
  23. Chen L, Yang J, Yu J, Yao Z, Sun L et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 2005; 33:D325–D328 [View Article][PubMed]
    [Google Scholar]
  24. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  25. Juhas M, Van der Meer JR, Gaillard M, Harding RM, Hood DW et al. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 2009; 33:376–393 [View Article][PubMed]
    [Google Scholar]
  26. Van Belkum A, Soriaga LB, Lafave MC, Akella S, Veyrieras JB et al. Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa . MBio 2015; 6:e01796-15 [View Article][PubMed]
    [Google Scholar]
  27. Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL et al. Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 2006; 7:R90 [View Article][PubMed]
    [Google Scholar]
  28. Jeukens J, Boyle B, Kukavica-Ibrulj I, Ouellet MM, Aaron SD et al. Comparative genomics of isolates of a Pseudomonas aeruginosa epidemic strain associated with chronic lung infections of cystic fibrosis patients. PLoS One 2014; 9:e87611 [View Article][PubMed]
    [Google Scholar]
  29. Valot B, Rohmer L, Jacobs MA, Miller SI, Bertrand X et al. Comparative genomic analysis of two multidrug-resistant clinical isolates of ST395 epidemic strain of Pseudomonas aeruginosa obtained 12 years apart. Genome Announc 2014; 2:e00515-14 [View Article][PubMed]
    [Google Scholar]
  30. Morgan R, Kohn S, Hwang SH, Hassett DJ, Sauer K. BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa . J Bacteriol 2006; 188:7335–7343 [View Article][PubMed]
    [Google Scholar]
  31. Williams P, Cámara M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 2009; 12:182–191 [View Article][PubMed]
    [Google Scholar]
  32. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 2003; 48:1511–1524 [View Article][PubMed]
    [Google Scholar]
  33. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 2003; 22:3803–3815 [View Article][PubMed]
    [Google Scholar]
  34. Hogardt M, Heesemann J. Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. Int J Med Microbiol 2010; 300:557–562 [View Article][PubMed]
    [Google Scholar]
  35. Rohmer L, Hocquet D, Miller SI. Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol 2011; 19:341–348 [View Article][PubMed]
    [Google Scholar]
  36. Hocquet D, Bertrand X, Köhler T, Talon D, Plésiat P. Genetic and phenotypic variations of a resistant Pseudomonas aeruginosa epidemic clone. Antimicrob Agents Chemother 2003; 47:1887–1894 [View Article][PubMed]
    [Google Scholar]
  37. Wozniak RA, Waldor MK. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 2010; 8:552–563 [View Article][PubMed]
    [Google Scholar]
  38. Qiu X, Gurkar AU, Lory S. Interstrain transfer of the large pathogenicity island (PAPI-1) of Pseudomonas aeruginosa . Proc Natl Acad Sci USA 2006; 103:19830–19835 [View Article][PubMed]
    [Google Scholar]
  39. Wargo MJ. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa . Appl Environ Microbiol 2013; 79:2112–2120 [View Article][PubMed]
    [Google Scholar]
  40. Allen KP, Randolph MM, Fleckenstein JM. Importance of heat-labile enterotoxin in colonization of the adult mouse small intestine by human enterotoxigenic Escherichia coli strains. Infect Immun 2006; 74:869–875 [View Article][PubMed]
    [Google Scholar]
  41. Arnesano F, Banci L, Bertini I, Thompsett AR. Solution structure of CopC: a cupredoxin-like protein involved in copper homeostasis. Structure 2002; 10:1337–1347[PubMed] [Crossref]
    [Google Scholar]
  42. Navarro CA, Von Bernath D, Martínez-Bussenius C, Castillo RA, Jerez CA. Cytoplasmic CopZ-Like protein and periplasmic rusticyanin and AcoP proteins as possible copper resistance determinants in Acidithiobacillus ferrooxidans ATCC 23270. Appl Environ Microbiol 2015; 82:1015–1022 [View Article][PubMed]
    [Google Scholar]
  43. Cha JS, Cooksey DA. Copper hypersensitivity and uptake in Pseudomonas syringae containing cloned components of the copper resistance operon. Appl Environ Microbiol 1993; 59:1671–1674[PubMed]
    [Google Scholar]
  44. Teitzel GM, Geddie A, de Long SK, Kirisits MJ, Whiteley M et al. Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa . J Bacteriol 2006; 188:7242–7256 [View Article][PubMed]
    [Google Scholar]
  45. Bondarczuk K, Piotrowska-Seget Z. Molecular basis of active copper resistance mechanisms in gram-negative bacteria. Cell Biol Toxicol 2013; 29:397–405 [View Article][PubMed]
    [Google Scholar]
  46. Molina L, Bernal P, Udaondo Z, Segura A, Ramos JL. Complete genome sequence of a Pseudomonas putida clinical isolate, strain H8234. Genome Announc 2013; 1:e00496-13 [View Article][PubMed]
    [Google Scholar]
  47. Cooksey DA. Genetics of bactericide resistance in plant pathogenic bacteria. Annu Rev Phytopathol 1990; 28:201–219 [View Article]
    [Google Scholar]
  48. Fernández-Olmos A, García-Castillo M, Alba JM, Morosini MI, Lamas A et al. Population structure and antimicrobial susceptibility of both nonpersistent and persistent Pseudomonas aeruginosa isolates recovered from cystic fibrosis patients. J Clin Microbiol 2013; 51:2761–2765 [View Article][PubMed]
    [Google Scholar]
  49. Libisch B, Balogh B, Füzi M. Identification of two multidrug-resistant Pseudomonas aeruginosa clonal lineages with a countrywide distribution in Hungary. Curr Microbiol 2009; 58:111–116 [View Article][PubMed]
    [Google Scholar]
  50. Slekovec C, Plantin J, Cholley P, Thouverez M, Talon D et al. Tracking down antibiotic-resistant Pseudomonas aeruginosa isolates in a wastewater network. PLoS One 2012; 7:e49300 [View Article][PubMed]
    [Google Scholar]
  51. Martin K, Baddal B, Mustafa N, Perry C, Underwood A et al. Clusters of genetically similar isolates of Pseudomonas aeruginosa from multiple hospitals in the UK. J Med Microbiol 2013; 62:988–1000 [View Article][PubMed]
    [Google Scholar]
  52. Bondy-Denomy J, Davidson AR. To acquire or resist: the complex biological effects of CRISPR-Cas systems. Trends Microbiol 2014; 22:218–225 [View Article][PubMed]
    [Google Scholar]
  53. Pawluk A, Bondy-Denomy J, Cheung VH, Maxwell KL, Davidson AR. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa . MBio 2014; 5:e00896-14 [View Article][PubMed]
    [Google Scholar]
  54. Center for Genomic Epidemiology 2015; Pseudomonas aeruginosa serotyper (PAst) [Internet]. Available from https://cge.cbs.dtu.dk/services/PAst-1.0/
  55. Center for Genomic Epidemiology 2017; CGE server [Internet]. Available from https://cge.cbs.dtu.dk//services/MLST/
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000129
Loading
/content/journal/mgen/10.1099/mgen.0.000129
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error