1887

Abstract

The genus Lactobacillus is a diverse group with a combined species count of over 200. They are the largest group within the lactic acid bacteria and one of the most important bacterial groups involved in food microbiology and human nutrition because of their fermentative and probiotic properties. Lactobacillus salivarius, a species commonly isolated from the gastrointestinal tract of humans and animals, has been described as having potential probiotic properties and results of previous studies have revealed considerable functional diversity existing on both the chromosomes and plasmids. Our study consists of comparative genomic analyses of the functional and phylogenomic diversity of 42 genomes of strains of L . salivarius using bioinformatic techniques. The main aim of the study was to describe intra-species diversity and to determine how this diversity is spread across the replicons. We found that multiple phylogenomic and non-phylogenomic methods used for reconstructing trees all converge on similar tree topologies, showing that different metrics largely agree on the evolutionary history of the species. The greatest genomic variation lies on the small plasmids, followed by the repA-type circular megaplasmid, with the chromosome varying least of all. Additionally, the presence of extra linear and circular megaplasmids is noted in several strains, while small plasmids are not always present. Glycosyl hydrolases, bacteriocins and proteases vary considerably on all replicons while two exopolysaccharide clusters and several clustered regularly interspaced short palindromic repeats-associated systems show a lot of variation on the chromosome. Overall, despite its reputation as a mammalian gastrointestinal tract specialist, the intra-specific variation of L. salivarius reveals potential strain-dependant effects on human health.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000115
2017-06-13
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/3/8/mgen000115.html?itemId=/content/journal/mgen/10.1099/mgen.0.000115&mimeType=html&fmt=ahah

References

  1. Sun Z, Harris HM, Mccann A, Guo C, Argimón S et al. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat Commun 2015; 6:8322 [View Article][PubMed]
    [Google Scholar]
  2. Salvetti E, Torriani S, Felis GE. The genus Lactobacillus: a taxonomic update. Probiotics Antimicrob Proteins 2012; 4:217–226 [View Article][PubMed]
    [Google Scholar]
  3. Slover CM, Danziger L. Lactobacillus: a review. Clinical Microbiology Newsletter 2008; 30:23–27 [View Article]
    [Google Scholar]
  4. Claesson MJ, van Sinderen D, O'Toole PW. Lactobacillus phylogenomics – towards a reclassification of the genus. Int J Syst Evol Microbiol 2008; 58:2945–2954 [View Article][PubMed]
    [Google Scholar]
  5. Zheng J, Ruan L, Sun M, Gänzle M. A genomic view of lactobacilli and pediococci demonstrates that phylogeny matches ecology and physiology. Appl Environ Microbiol 2015; 81:7233–7243 [View Article][PubMed]
    [Google Scholar]
  6. Canchaya C, Claesson MJ, Fitzgerald GF, van Sinderen D, O'Toole PW. Diversity of the genus Lactobacillus revealed by comparative genomics of five species. Microbiology 2006; 152:3185–3196 [View Article][PubMed]
    [Google Scholar]
  7. Kant R, Blom J, Palva A, Siezen RJ, de Vos WM. Comparative genomics of Lactobacillus . Microb Biotechnol 2011; 4:323–332 [View Article][PubMed]
    [Google Scholar]
  8. Forde BM, Neville BA, O'Donnell MM, Riboulet-Bisson E, Claesson MJ et al. Genome sequences and comparative genomics of two Lactobacillus ruminis strains from the bovine and human intestinal tracts. Microb Cell Fact 2011; 10:S13 [View Article][PubMed]
    [Google Scholar]
  9. Broadbent JR, Neeno-Eckwall EC, Stahl B, Tandee K, Cai H et al. Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation. BMC Genomics 2012; 13:533 [View Article][PubMed]
    [Google Scholar]
  10. Cremonesi P, Chessa S, Castiglioni B. Genome sequence and analysis of Lactobacillus helveticus . Front Microbiol 2012; 3:435 [View Article][PubMed]
    [Google Scholar]
  11. Douillard FP, Ribbera A, Kant R, Pietilä TE, Järvinen HM et al. Comparative genomic and functional analysis of 100 Lactobacillus rhamnosus strains and their comparison with strain GG. PLoS Genet 2013; 9:e1003683 [View Article][PubMed]
    [Google Scholar]
  12. Smokvina T, Wels M, Polka J, Chervaux C, Brisse S et al. Lactobacillus paracasei comparative genomics: towards species pan-genome definition and exploitation of diversity. PLoS One 2013; 8:e68731 [View Article][PubMed]
    [Google Scholar]
  13. Ojala T, Kankainen M, Castro J, Cerca N, Edelman S et al. Comparative genomics of Lactobacillus crispatus suggests novel mechanisms for the competitive exclusion of Gardnerella vaginalis . BMC Genomics 2014; 15:1070 [View Article][PubMed]
    [Google Scholar]
  14. Senan S, Prajapati JB, Joshi CG. Comparative genome-scale analysis of niche-based stress-responsive genes in Lactobacillus helveticus strains. Genome 2014; 57:185–192 [View Article][PubMed]
    [Google Scholar]
  15. O' Donnell MM, Harris HM, Lynch DB, Ross RP, O'Toole PW. Lactobacillus ruminis strains cluster according to their mammalian gut source. BMC Microbiol 2015; 15:80 [View Article][PubMed]
    [Google Scholar]
  16. Wegmann U, Mackenzie DA, Zheng J, Goesmann A, Roos S et al. The pan-genome of Lactobacillus reuteri strains originating from the pig gastrointestinal tract. BMC Genomics 2015; 16:1023 [View Article][PubMed]
    [Google Scholar]
  17. Zheng J, Zhao X, Lin XB, Gänzle M. Comparative genomics Lactobacillus reuteri from sourdough reveals adaptation of an intestinal symbiont to food fermentations. Sci Rep 2015; 5:18234 [View Article][PubMed]
    [Google Scholar]
  18. Raftis EJ, Salvetti E, Torriani S, Felis GE, O'Toole PW. Genomic diversity of Lactobacillus salivarius . Appl Environ Microbiol 2011; 77:954–965 [View Article]
    [Google Scholar]
  19. Martino ME, Bayjanov JR, Caffrey BE, Wels M, Joncour P et al. Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environ Microbiol 2016; 18:4974–4989 [View Article][PubMed]
    [Google Scholar]
  20. Claesson MJ, Li Y, Leahy S, Canchaya C, van Pijkeren JP et al. Multireplicon genome architecture of Lactobacillus salivarius . Proc Natl Acad Sci USA 2006; 103:6718–6723 [View Article][PubMed]
    [Google Scholar]
  21. Messaoudi S, Manai M, Kergourlay G, Prévost H, Connil N et al. Lactobacillus salivarius: bacteriocin and probiotic activity. Food Microbiol 2013; 36:296–304 [View Article][PubMed]
    [Google Scholar]
  22. Neville BA, O'Toole PW. Probiotic properties of Lactobacillus salivarius and closely related Lactobacillus species. Future Microbiol 2010; 5:759–774 [View Article][PubMed]
    [Google Scholar]
  23. Flynn S, van Sinderen D, Thornton GM, Holo H, Nes IF et al. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology 2002; 148:973–984 [View Article][PubMed]
    [Google Scholar]
  24. Koskenniemi K, Laakso K, Koponen J, Kankainen M, Greco D et al. Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG. Mol Cell Proteomics 2011; 10:M110.002741 [View Article][PubMed]
    [Google Scholar]
  25. Li Y, Canchaya C, Fang F, Raftis E, Ryan KA et al. Distribution of megaplasmids in Lactobacillus salivarius and other lactobacilli. J Bacteriol 2007; 189:6128–6139 [View Article][PubMed]
    [Google Scholar]
  26. Fang F, Flynn S, Li Y, Claesson MJ, van Pijkeren JP et al. Characterization of endogenous plasmids from Lactobacillus salivarius UCC118. Appl Environ Microbiol 2008; 74:3216–3228 [View Article][PubMed]
    [Google Scholar]
  27. Raftis EJ, Forde BM, Claesson MJ, O'Toole PW. Unusual genome complexity in Lactobacillus salivarius JCM1046. BMC Genomics 2014; 15:771 [View Article][PubMed]
    [Google Scholar]
  28. Zerbino DR. Using the Velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinformatics 2010; Chapter 11:Unit 11.5 [View Article][PubMed]
    [Google Scholar]
  29. Rissman AI, Mau B, Biehl BS, Darling AE, Glasner JD et al. Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics 2009; 25:2071–2073 [View Article][PubMed]
    [Google Scholar]
  30. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007; 23:673–679 [View Article][PubMed]
    [Google Scholar]
  31. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [View Article][PubMed]
    [Google Scholar]
  32. Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res 2006; 34:5623–5630 [View Article][PubMed]
    [Google Scholar]
  33. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H et al. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 1999; 27:29–34 [View Article][PubMed]
    [Google Scholar]
  34. Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science 1997; 278:631–637 [View Article][PubMed]
    [Google Scholar]
  35. Yu C, Zavaljevski N, Desai V, Reifman J. QuartetS: a fast and accurate algorithm for large-scale orthology detection. Nucleic Acids Res 2011; 39:e88 [View Article][PubMed]
    [Google Scholar]
  36. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004; 5:113 [View Article][PubMed]
    [Google Scholar]
  37. R Core Team R: A Language and Environment for Statistical Computing Vienna, Austria: R Foundation for Statistical Computing; 2015 www.R-project.org/
    [Google Scholar]
  38. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  39. Morariu Vi SBV, Raykar VC, Duraiswami R, Davis LS. Automatic online tuning for fast Gaussian summation. Adv Neural Inf Process Syst 20091113–1120
    [Google Scholar]
  40. Tettelin H, Riley D, Cattuto C, Medini D. Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 2008; 11:472–477 [View Article][PubMed]
    [Google Scholar]
  41. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  42. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed]
    [Google Scholar]
  43. Hutchison CA, Chuang RY, Noskov VN, Assad-Garcia N, Deerinck TJ et al. Design and synthesis of a minimal bacterial genome. Science 2016; 351:aad6253 [View Article][PubMed]
    [Google Scholar]
  44. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  45. Morita H, Shiratori C, Murakami M, Takami H, Kato Y et al. Lactobacillus hayakitensis sp. nov., isolated from intestines of healthy thoroughbreds. Int J Syst Evol Microbiol 2007; 57:2836–2839 [View Article][PubMed]
    [Google Scholar]
  46. Ham JS, Kim HW, Seol KH, Jang A, Jeong SG et al. Genome sequence of Lactobacillus salivarius NIAS840, isolated from chicken intestine. J Bacteriol 2011; 193:5551–5552 [View Article][PubMed]
    [Google Scholar]
  47. Kergourlay G, Messaoudi S, Dousset X, Prévost H. Genome sequence of Lactobacillus salivarius SMXD51, a potential probiotic strain isolated from chicken cecum, showing anti-Campylobacter activity. J Bacteriol 2012; 194:3008–3009 [View Article][PubMed]
    [Google Scholar]
  48. Call EK, Klaenhammer TR. Relevance and application of sortase and sortase-dependent proteins in lactic acid bacteria. Front Microbiol 2013; 4:73 [View Article][PubMed]
    [Google Scholar]
  49. Spirig T, Weiner EM, Clubb RT. Sortase enzymes in Gram-positive bacteria. Mol Microbiol 2011; 82:1044–1059 [View Article][PubMed]
    [Google Scholar]
  50. Ciszek-Lenda M. Biological functions of exopolysaccharides from probiotic bacteria. Immunology 2011; 36:51–55
    [Google Scholar]
  51. Goncalves BCM, Baldo C, Celligoi MAPC. Levan and Levansucrase-A Mini Review. Int J Sci Res Sci Eng Technol 2015; 4:
    [Google Scholar]
  52. Pérez-Cano FJ, Dong H, Yaqoob P. In vitro immunomodulatory activity of Lactobacillus fermentum CECT5716 and Lactobacillus salivarius CECT5713: two probiotic strains isolated from human breast milk. Immunobiology 2010; 215:996–1004 [View Article][PubMed]
    [Google Scholar]
  53. Lebeer S, Vanderleyden J, de Keersmaecker SC. Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 2008; 72:728–764 [View Article][PubMed]
    [Google Scholar]
  54. Patten DA, Laws AP. Lactobacillus-produced exopolysaccharides and their potential health benefits: a review. Benef Microbes 2015; 6:457–471 [View Article][PubMed]
    [Google Scholar]
  55. Barrett E, Hayes M, O'Connor P, Gardiner G, Fitzgerald GF et al. Salivaricin P, one of a family of two-component antilisterial bacteriocins produced by intestinal isolates of Lactobacillus salivarius . Appl Environ Microbiol 2007; 73:3719–3723 [View Article][PubMed]
    [Google Scholar]
  56. Nilsen T, Nes IF, Holo H. Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl Environ Microbiol 2003; 69:2975–2984 [View Article][PubMed]
    [Google Scholar]
  57. Busarcevic M, Dalgalarrondo M. Purification and genetic characterisation of the novel bacteriocin LS2 produced by the human oral strain Lactobacillus salivarius BGHO1. Int J Antimicrob Agents 2012; 40:127–134 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000115
Loading
/content/journal/mgen/10.1099/mgen.0.000115
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error