Sharing of carbapenemase-encoding plasmids between Enterobacteriaceae in UK sewage uncovered by MinION sequencing Open Access

Abstract

Dissemination of carbapenem resistance among pathogenic Gram-negative bacteria is a looming medical emergency. Efficient spread of resistance within and between bacterial species is facilitated by mobile genetic elements. We hypothesized that wastewater contributes to the dissemination of carbapenemase-producing Enterobacteriaceae (CPE), and studied this through a cross-sectional observational study of wastewater in the East of England. We isolated clinically relevant species of CPE in untreated and treated wastewater, confirming that waste treatment does not prevent release of CPE into the environment. We observed that CPE-positive plants were restricted to those in direct receipt of hospital waste, suggesting that hospital effluent may play a role in disseminating carbapenem resistance. We postulated that plasmids carrying carbapenemase genes were exchanged between bacterial hosts in sewage, and used short-read (Illumina) and long-read (MinION) technologies to characterize plasmids encoding resistance to antimicrobials and heavy metals. We demonstrated that different CPE species (Enterobacter kobei and Raoultella ornithinolytica) isolated from wastewater from the same treatment plant shared two plasmids of 63 and 280 kb. The former plasmid conferred resistance to carbapenems (bla OXA-48), and the latter to numerous drug classes and heavy metals. We also report the complete genome sequence for Enterobacter kobei. Small, portable sequencing instruments such as the MinION have the potential to improve the quality of information gathered on antimicrobial resistance in the environment.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000114
2017-07-04
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/3/7/mgen000114.html?itemId=/content/journal/mgen/10.1099/mgen.0.000114&mimeType=html&fmt=ahah

References

  1. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae . Emerg Infect Dis 2011; 17:1791–1798 [View Article][PubMed]
    [Google Scholar]
  2. Jain A, Hopkins KL, Turton J, Doumith M, Hill R et al. NDM carbapenemases in the United Kingdom: an analysis of the first 250 cases. J Antimicrob Chemother 2014; 69:1777–1784 [View Article][PubMed]
    [Google Scholar]
  3. Findlay J, Hopkins KL, Alvarez-Buylla A, Meunier D, Mustafa N et al. Characterization of carbapenemase-producing Enterobacteriaceae in the West Midlands region of England: 2007–14. J Antimicrob Chemother 2017; 72::1054–1062 [View Article][PubMed]
    [Google Scholar]
  4. Woodford N, Wareham DW, Guerra B, Teale C. Carbapenemase-producing Enterobacteriaceae and non-Enterobacteriaceae from animals and the environment: an emerging public health risk of our own making?. J Antimicrob Chemother 2014; 69:287–291 [View Article][PubMed]
    [Google Scholar]
  5. Tzouvelekis LS, Markogiannakis A, Piperaki E, Souli M, Daikos GL. Treating infections caused by carbapenemase-producing Enterobacteriaceae . Clin Microbiol Infect 2014; 20:862–872 [View Article][PubMed]
    [Google Scholar]
  6. Falagas ME, Tansarli GS, Karageorgopoulos DE, Vardakas KZ. Deaths attributable to carbapenem-resistant Enterobacteriaceae infections. Emerg Infect Dis 2014; 20:1170–1175 [View Article][PubMed]
    [Google Scholar]
  7. Wellington EM, Boxall AB, Cross P, Feil EJ, Gaze WH et al. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect Dis 2013; 13:155–165 [View Article][PubMed]
    [Google Scholar]
  8. Haller S, Eller C, Hermes J, Kaase M, Steglich M et al. What caused the outbreak of ESBL-producing Klebsiella pneumoniae in a neonatal intensive care unit, Germany 2009 to 2012? Reconstructing transmission with epidemiological analysis and whole-genome sequencing. BMJ Open 2015; 5:e007397 [View Article][PubMed]
    [Google Scholar]
  9. Conlan S, Thomas PJ, Deming C, Park M, Lau AF et al. Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Sci Transl Med 2014; 6:254ra126 [View Article][PubMed]
    [Google Scholar]
  10. Sheppard AE, Stoesser N, Wilson DJ, Sebra R, Kasarskis A et al. Nested Russian doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene bla KPC . Antimicrob Agents Chemother 2016; 60:3767–3778 [View Article][PubMed]
    [Google Scholar]
  11. Judge K, Harris SR, Reuter S, Parkhill J, Peacock SJ. Early insights into the potential of the Oxford Nanopore MinION for the detection of antimicrobial resistance genes. J Antimicrob Chemother 2015; 70:2775–2778 [View Article][PubMed]
    [Google Scholar]
  12. Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol 2015; 33:296–300 [View Article][PubMed]
    [Google Scholar]
  13. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 2016; 530:228–232 [View Article][PubMed]
    [Google Scholar]
  14. Turton JF, Doumith M, Hopkins KL, Perry C, Meunier D et al. Clonal expansion of Escherichia coli ST38 carrying a chromosomally integrated OXA-48 carbapenemase gene. J Med Microbiol 2016; 65:538–546 [View Article][PubMed]
    [Google Scholar]
  15. Oliveira S, Moura RA, Silva KC, Pavez M, Mcculloch JA et al. Isolation of KPC-2-producing Klebsiella pneumoniae strains belonging to the high-risk multiresistant clonal complex 11 (ST437 and ST340) in urban rivers. J Antimicrob Chemother 2014; 69:849–852 [View Article][PubMed]
    [Google Scholar]
  16. Isozumi R, Yoshimatsu K, Yamashiro T, Hasebe F, Nguyen BM et al. bla NDM-1-positive Klebsiella pneumoniae from environment, Vietnam. Emerg Infect Dis 2012; 18:1383–1385 [View Article][PubMed]
    [Google Scholar]
  17. Montezzi LF, Campana EH, Corrêa LL, Justo LH, Paschoal RP et al. Occurrence of carbapenemase-producing bacteria in coastal recreational waters. Int J Antimicrob Agents 2015; 45:174–177 [View Article][PubMed]
    [Google Scholar]
  18. Zurfluh K, Hächler H, Nüesch-Inderbinen M, Stephan R. Characteristics of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae isolates from rivers and lakes in Switzerland. Appl Environ Microbiol 2013; 79:3021–3026 [View Article][PubMed]
    [Google Scholar]
  19. Poirel L, Barbosa-Vasconcelos A, Simões RR, da Costa PM, Liu W et al. Environmental KPC-producing Escherichia coli isolates in Portugal. Antimicrob Agents Chemother 2012; 56:1662–1663 [View Article][PubMed]
    [Google Scholar]
  20. Galler H, Feierl G, Petternel C, Reinthaler FF, Haas D et al. KPC-2 and OXA-48 carbapenemase-harbouring Enterobacteriaceae detected in an Austrian wastewater treatment plant. Clin Microbiol Infect 2014; 20:O132–O134 [View Article][PubMed]
    [Google Scholar]
  21. Girlich D, Poirel L, Szczepanowski R, Schlüter A, Nordmann P. Carbapenem-hydrolyzing GES-5-encoding gene on different plasmid types recovered from a bacterial community in a sewage treatment plant. Appl Environ Microbiol 2012; 78:1292–1295 [View Article][PubMed]
    [Google Scholar]
  22. Picão RC, Cardoso JP, Campana EH, Nicoletti AG, Petrolini FVB et al. The route of antimicrobial resistance from the hospital effluent to the environment: focus on the occurrence of KPC-producing Aeromonas spp. and Enterobacteriaceae in sewage. Diagn Microbiol Infect Dis 2013; 76:80–85 [View Article][PubMed]
    [Google Scholar]
  23. Köser CU, Holden MT, Ellington MJ, Cartwright EJ, Brown NM et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med 2012; 366:2267–2275 [View Article][PubMed]
    [Google Scholar]
  24. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article][PubMed]
    [Google Scholar]
  25. Hoffmann H, Roggenkamp A. Population genetics of the nomenspecies Enterobacter cloacae . Appl Environ Microbiol 2003; 69:5306–5318 [View Article][PubMed]
    [Google Scholar]
  26. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article][PubMed]
    [Google Scholar]
  27. Reuter S, Ellington MJ, Cartwright EJ, Köser CU, Török ME et al. Rapid bacterial whole-genome sequencing to enhance diagnostic and public health microbiology. JAMA Intern Med 2013; 173:1397–1404 [View Article][PubMed]
    [Google Scholar]
  28. Judge K, Hunt M, Reuter S, Tracey A, Quail MA et al. Comparison of bacterial genome assembly software for MinION data and their applicability to medical microbiology. Microb Genom 2016; 2:e000085 [View Article][PubMed]
    [Google Scholar]
  29. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [View Article][PubMed]
    [Google Scholar]
  30. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article][PubMed]
    [Google Scholar]
  31. Berlin K, Koren S, Chin CS, Drake JP, Landolin JM et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 2015; 33:623–630 [View Article][PubMed]
    [Google Scholar]
  32. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article][PubMed]
    [Google Scholar]
  33. Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA et al. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol 2015; 16:294 [View Article][PubMed]
    [Google Scholar]
  34. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  35. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  36. Page AJ, de Silva N, Hunt M, Quail MA, Parkhill J et al. Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Microb Genom 2016; 2::e000083 [View Article][PubMed]
    [Google Scholar]
  37. Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG et al. ACT: the Artemis comparison tool. Bioinformatics 2005; 21:3422–3423 [View Article][PubMed]
    [Google Scholar]
  38. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P et al. Artemis: sequence visualization and annotation. Bioinformatics 2000; 16:944–945 [View Article][PubMed]
    [Google Scholar]
  39. Bonfield JK, Whitwham A. Gap5—editing the billion fragment sequence assembly. Bioinformatics 2010; 26:1699–1703 [View Article][PubMed]
    [Google Scholar]
  40. Otto TD, Sanders M, Berriman M, Newbold C. Iterative Correction of Reference Nucleotides (iCORN) using second generation sequencing technology. Bioinformatics 2010; 26:1704–1707 [View Article][PubMed]
    [Google Scholar]
  41. Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae . Antimicrob Agents Chemother 2004; 48:15–22 [View Article][PubMed]
    [Google Scholar]
  42. Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J Antimicrob Chemother 2007; 59:321–322 [View Article][PubMed]
    [Google Scholar]
  43. Mushtaq S, Irfan S, Sarma JB, Doumith M, Pike R et al. Phylogenetic diversity of Escherichia coli strains producing NDM-type carbapenemases. J Antimicrob Chemother 2011; 66:2002–2005 [View Article][PubMed]
    [Google Scholar]
  44. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae . Antimicrob Agents Chemother 2001; 45:1151–1161 [View Article][PubMed]
    [Google Scholar]
  45. Woodford N, Warner M, Pike R, Zhang J. Evaluation of a commercial microarray to detect carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother 2011; 66:2887–2888 [View Article][PubMed]
    [Google Scholar]
  46. Ellington MJ, Findlay J, Hopkins KL, Meunier D, Alvarez-Buylla A et al. Multicentre evaluation of a real-time PCR assay to detect genes encoding clinically relevant carbapenemases in cultured bacteria. Int J Antimicrob Agents 2016; 47:151–154 [View Article][PubMed]
    [Google Scholar]
  47. Doumith M, Ellington MJ, Livermore DM, Woodford N. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J Antimicrob Chemother 2009; 63:659–667 [View Article][PubMed]
    [Google Scholar]
  48. Zhou K, Yu W, Bonnet R, Cattoir V, Shen P et al. Emergence of a novel Enterobacter kobei clone carrying chromosomal-encoded CTX-M-12 with diversified pathogenicity in northeast China. New Microbes New Infect 2017; 17:7–10 [View Article][PubMed]
    [Google Scholar]
  49. Shin SH, Um Y, Beak JH, Kim S, Lee S et al. Complete genome sequence of Raoultella ornithinolytica strain B6, a 2,3-butanediol-producing bacterium isolated from oil-contaminated soil. Genome Announc 2013; 1:e00395-13 [View Article][PubMed]
    [Google Scholar]
  50. Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother 2012; 56:559–562 [View Article][PubMed]
    [Google Scholar]
  51. Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 2012; 67:1597–1606 [View Article][PubMed]
    [Google Scholar]
  52. Manageiro V, Pinto M, Caniça M. Complete sequence of a bla OXA -48-harboring IncL plasmid from an Enterobacter cloacae clinical isolate. Genome Announc 2015; 3:e01076-15 [View Article][PubMed]
    [Google Scholar]
  53. Power K, Wang J, Karczmarczyk M, Crowley B, Cotter M et al. Molecular analysis of OXA-48-carrying conjugative IncL/M-like plasmids in clinical isolates of Klebsiella pneumoniae in Ireland. Microb Drug Resist 2014; 20:270–274 [View Article][PubMed]
    [Google Scholar]
  54. Al-Bayssari C, Olaitan AO, Leangapichart T, Okdah L, Dabboussi F et al. Whole-genome sequence of a bla OXA-48-harboring Raoultella ornithinolytica clinical isolate from Lebanon. Antimicrob Agents Chemother 2016; 60:2548–2550 [View Article][PubMed]
    [Google Scholar]
  55. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL et al. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 2005; 63:219–228 [View Article][PubMed]
    [Google Scholar]
  56. Chen YT, Liao TL, Liu YM, Lauderdale TL, Yan JJ et al. Mobilization of qnrB2 and ISCR1 in plasmids. Antimicrob Agents Chemother 2009; 53:1235–1237 [View Article][PubMed]
    [Google Scholar]
  57. Water UK. National Guidance for Healthcare Waste Water Discharges; issue date August 2014.. London:: Water UK;; 2014 https://dldropboxusercontentcom/u/299993612/Publications/Guidance/Wastewater/Water
  58. Hocquet D, Muller A, Bertrand X. What happens in hospitals does not stay in hospitals: antibiotic-resistant bacteria in hospital wastewater systems. J Hosp Infect 2016; 93:395–402 [View Article][PubMed]
    [Google Scholar]
  59. Uz Zaman T, Aldrees M, Al Johani SM, Alrodayyan M, Aldughashem FA et al. Multi-drug carbapenem-resistant Klebsiella pneumoniae infection carrying the OXA-48 gene and showing variations in outer membrane protein 36 causing an outbreak in a tertiary care hospital in Riyadh, Saudi Arabia. Int J Infect Dis 2014; 28:186–192 [View Article][PubMed]
    [Google Scholar]
  60. Carattoli A, Seiffert SN, Schwendener S, Perreten V, Endimiani A. Differentiation of IncL and IncM plasmids associated with the spread of clinically relevant antimicrobial resistance. PLoS One 2015; 10:e0123063 [View Article][PubMed]
    [Google Scholar]
  61. Chung The H, Karkey A, Pham Thanh D, Boinett CJ, Cain AK et al. A high-resolution genomic analysis of multidrug-resistant hospital outbreaks of Klebsiella pneumoniae . EMBO Mol Med 2015; 7:227–239 [View Article][PubMed]
    [Google Scholar]
  62. Trepanier P, Mallard K, Meunier D, Pike R, Brown D et al. Carbapenemase-producing Enterobacteriaceae in the UK: a national study (EuSCAPE-UK) on prevalence, incidence, laboratory detection methods and infection control measures. J Antimicrob Chemother 2017; 72:596–603 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000114
Loading
/content/journal/mgen/10.1099/mgen.0.000114
Loading

Data & Media loading...

Supplements

Supplementary File 1

Supplementary File 2

PDF

Most cited Most Cited RSS feed