1887

Abstract

The global spread of Klebsiella pneumoniae producing Klebsiella pneumoniae carbapenemase (KPC) has been mainly associated with the dissemination of high-risk clones. In the last decade, hospital outbreaks involving KPC-producing K. pneumoniae have been predominantly attributed to isolates belonging to clonal group (CG) 258. However, results of recent epidemiological analysis indicate that KPC-producing sequence type (ST) 307, is emerging in different parts of the world and is a candidate to become a prevalent high-risk clone in the near future. Here we show that the ST307 genome encodes genetic features that may provide an advantage in adaptation to the hospital environment and the human host. Sequence analysis revealed novel plasmid-located virulence factors, including a cluster for glycogen synthesis. Glycogen production is considered to be one of the possible adaptive responses to long-term survival and growth in environments outside the host. Chromosomally-encoded virulence traits in the clone comprised fimbriae, an integrative conjugative element carrying the yersiniabactin siderophore, and two different capsular loci. Compared with the ST258 clone, capsulated ST307 isolates showed higher resistance to complement-mediated killing. The acquired genetic features identified in the genome of this new emerging clone may contribute to increased persistence of ST307 in the hospital environment and shed light on its potential epidemiological success.

Keyword(s): capsule , KPC , plasmid , ST259 , ST307 and WGS
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000110
2017-04-26
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/mgen/3/4/mgen000110.html?itemId=/content/journal/mgen/10.1099/mgen.0.000110&mimeType=html&fmt=ahah

References

  1. Wyres KL, Holt KE. Klebsiella pneumoniae population genomics and antimicrobial-resistant clones. Trends Microbiol 2016;24:944–956 [CrossRef][PubMed]
    [Google Scholar]
  2. Chen L, Chavda KD, Melano RG, Jacobs MR, Koll B et al. Comparative genomic analysis of KPC-encoding pKpQIL-like plasmids and their distribution in New Jersey and New York hospitals. Antimicrob Agents Chemother 2014;58:2871–2877 [CrossRef][PubMed]
    [Google Scholar]
  3. Bowers JR, Kitchel B, Driebe EM, Maccannell DR, Roe C et al. Genomic analysis of the emergence and rapid global dissemination of the clonal group 258 Klebsiella pneumoniae pandemic. PLoS One 2015;10:e0133727 [CrossRef][PubMed]
    [Google Scholar]
  4. Bialek-Davenet S, Criscuolo A, Ailloud F, Passet V, Jones L et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg Infect Dis 2014;20:1812–1820 [CrossRef][PubMed]
    [Google Scholar]
  5. Struve C, Roe CC, Stegger M, Stahlhut SG, Hansen DS et al. Mapping the evolution of hypervirulent Klebsiella pneumoniae. MBio 2015;6:e00630 [CrossRef][PubMed]
    [Google Scholar]
  6. Zhou K, Lokate M, Deurenberg RH, Tepper M, Arends JP et al. Use of whole-genome sequencing to trace, control and characterize the regional expansion of extended-spectrum β-lactamase producing ST15 Klebsiella pneumoniae. Sci Rep 2016;6:20840 [CrossRef][PubMed]
    [Google Scholar]
  7. Ruiz-Garbajosa P, Curiao T, Tato M, Gijón D, Pintado V et al. Multiclonal dispersal of KPC genes following the emergence of non-ST258 KPC-producing Klebsiella pneumoniae clones in Madrid, Spain. J Antimicrob Chemother 2013;68:2487–2492 [CrossRef][PubMed]
    [Google Scholar]
  8. Giske CG, Fröding I, Hasan CM, Turlej-Rogacka A, Toleman M et al. Diverse sequence types of Klebsiella pneumoniae contribute to the dissemination of bla NDM-1 in India, Sweden, and the United Kingdom. Antimicrob Agents Chemother 2012;56:2735–2738 [CrossRef][PubMed]
    [Google Scholar]
  9. Girlich D, Bouihat N, Poirel L, Benouda A, Nordmann P. High rate of faecal carriage of extended-spectrum β-lactamase and OXA-48 carbapenemase-producing Enterobacteriaceae at a university hospital in Morocco. Clin Microbiol Infect 2014;20:350–354 [CrossRef][PubMed]
    [Google Scholar]
  10. Castanheira M, Farrell SE, Wanger A, Rolston KV, Jones RN et al. Rapid expansion of KPC-2-producing Klebsiella pneumoniae isolates in two Texas hospitals due to clonal spread of ST258 and ST307 lineages. Microb Drug Resist 2013;19:295–297 [CrossRef][PubMed]
    [Google Scholar]
  11. Gona F, Barbera F, Pasquariello AC, Grossi P, Gridelli B et al. In vivo multiclonal transfer of bla KPC-3 from Klebsiella pneumoniae to Escherichia coli in surgery patients. Clin Microbiol Infect 2014;20:O633 [CrossRef][PubMed]
    [Google Scholar]
  12. Richter SN, Frasson I, Franchin E, Bergo C, Lavezzo E et al. KPC-mediated resistance in Klebsiella pneumoniae in two hospitals in Padua, Italy, June 2009–December 2011: massive spreading of a KPC-3-encoding plasmid and involvement of non-intensive care units. Gut Pathog 2012;4:7 [CrossRef][PubMed]
    [Google Scholar]
  13. Habeeb MA, Haque A, Nematzadeh S, Iversen A, Giske CG. High prevalence of 16S rRNA methylase RmtB among CTX-M extended-spectrum β-lactamase-producing Klebsiella pneumoniae from Islamabad, Pakistan. Int J Antimicrob Agents 2013;41:524–526 [CrossRef][PubMed]
    [Google Scholar]
  14. Harada K, Shimizu T, Mukai Y, Kuwajima K, Sato T et al. Phenotypic and molecular characterization of antimicrobial resistance in Klebsiella spp. isolates from companion animals in Japan: clonal dissemination of multidrug-resistant extended-spectrum β-lactamase-producing Klebsiella pneumoniae. Front Microbiol 2016;7:1021 [CrossRef][PubMed]
    [Google Scholar]
  15. Park DJ, Yu JK, Park KG, Park YJ. Genotypes of ciprofloxacin-resistant Klebsiella pneumoniae in Korea and their characteristics according to the genetic lineages. Microb Drug Resist 2015;21:622–630 [CrossRef][PubMed]
    [Google Scholar]
  16. Mammina C, Palma DM, Bonura C, Anna Plano MR, Monastero R et al. Outbreak of infection with Klebsiella pneumoniae sequence type 258 producing Klebsiella pneumoniae carbapenemase 3 in an intensive care unit in Italy. J Clin Microbiol 2010;48:1506–1507 [CrossRef][PubMed]
    [Google Scholar]
  17. Giuffrè M, Bonura C, Geraci DM, Saporito L, Catalano R et al. Successful control of an outbreak of colonization by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae sequence type 258 in a neonatal intensive care unit, Italy. J Hosp Infect 2013;85:233–236 [CrossRef][PubMed]
    [Google Scholar]
  18. Bonura C, Giuffrè M, Aleo A, Fasciana T, Di Bernardo F et al. An update of the evolving epidemic of bla KPC carrying Klebsiella pneumoniae in Sicily, Italy, 2014: emergence of multiple non-ST258 clones. PLoS One 2015;10:e0132936 [CrossRef][PubMed]
    [Google Scholar]
  19. Geraci DM, Bonura C, Giuffrè M, Saporito L, Graziano G et al. Is the monoclonal spread of the ST258, KPC-3-producing clone being replaced in southern Italy by the dissemination of multiple clones of carbapenem-nonsusceptible, KPC-3-producing Klebsiella pneumoniae?. Clin Microbiol Infect 2015;21:e15–e17 [CrossRef][PubMed]
    [Google Scholar]
  20. Ocampo AM, Chen L, Cienfuegos AV, Roncancio G, Chavda KD et al. A two-year surveillance in five Colombian tertiary care hospitals reveals high frequency of non-CG258 clones of carbapenem-resistant Klebsiella pneumoniae with distinct clinical characteristics. Antimicrob Agents Chemother 2016;60:332–342 [CrossRef]
    [Google Scholar]
  21. Tritt A, Eisen JA, Facciotti MT, Darling AE. An integrated pipeline for de novo assembly of microbial genomes. PLoS One 2012;7:e42304 [CrossRef][PubMed]
    [Google Scholar]
  22. van Domselaar GH, Stothard P, Shrivastava S, Cruz JA, Guo A et al. BASys: a web server for automated bacterial genome annotation. Nucleic Acids Res 2005;33:W455–W459 [CrossRef][PubMed]
    [Google Scholar]
  23. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012;67:2640–2644 [CrossRef][PubMed]
    [Google Scholar]
  24. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014;58:3895–3903 [CrossRef][PubMed]
    [Google Scholar]
  25. Brisse S, Passet V, Haugaard AB, Babosan A, Kassis-Chikhani N et al. wzi gene sequencing, a rapid method for determination of capsular type for Klebsiella strains. J Clin Microbiol 2013;51:4073–4078 [CrossRef][PubMed]
    [Google Scholar]
  26. Deleo FR, Chen L, Porcella SF, Martens CA, Kobayashi SD et al. Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae. Proc Natl Acad Sci USA 2014;111:4988–4993 [CrossRef][PubMed]
    [Google Scholar]
  27. Snitkin ES, Zelazny AM, Thomas PJ, Stock F, Henderson DK et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 2012;4:148ra116 [CrossRef][PubMed]
    [Google Scholar]
  28. Liu P, Li P, Jiang X, Bi D, Xie Y et al. Complete genome sequence of Klebsiella pneumoniae subsp. pneumoniae HS11286, a multidrug-resistant strain isolated from human sputum. J Bacteriol 2012;194:1841–1842 [CrossRef][PubMed]
    [Google Scholar]
  29. Jolley KA, Maiden MC. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010;11:595 [CrossRef][PubMed]
    [Google Scholar]
  30. Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010;27:221–224 [CrossRef][PubMed]
    [Google Scholar]
  31. Sheppard AE, Stoesser N, Sebra R, Kasarskis A, Deikus G et al. Complete genome sequence of KPC-producing Klebsiella pneumoniae strain CAV1193. Genome Announc 2016;4:e01649-15 [CrossRef][PubMed]
    [Google Scholar]
  32. Marcoleta AE, Berríos-Pastén C, Nuñez G, Monasterio O, Lagos R. Klebsiella pneumoniae asparagine tDNAs are integration hotspots for different genomic islands encoding microcin E492 production determinants and other putative virulence factors present in hypervirulent strains. Front Microbiol 2016;7:1–17 [CrossRef][PubMed]
    [Google Scholar]
  33. Carattoli A, García-Fernández A, Varesi P, Fortini D, Gerardi S et al. Molecular epidemiology of Escherichia coli producing extended-spectrum β-lactamases isolated in Rome, Italy. J Clin Microbiol 2008;46:103–108 [CrossRef][PubMed]
    [Google Scholar]
  34. Leavitt A, Chmelnitsky I, Ofek I, Carmeli Y, Navon-Venezia S. Plasmid pKpQIL encoding KPC-3 and TEM-1 confers carbapenem resistance in an extremely drug-resistant epidemic Klebsiella pneumoniae strain. J Antimicrob Chemother 2010;65:243–248 [CrossRef][PubMed]
    [Google Scholar]
  35. Gootz TD, Lescoe MK, Dib-Hajj F, Dougherty BA, He W et al. Genetic organization of transposase regions surrounding bla KPC carbapenemase genes on plasmids from Klebsiella strains isolated in a New York City hospital. Antimicrob Agents Chemother 2009;53:1998–2004 [CrossRef][PubMed]
    [Google Scholar]
  36. García-Fernández A, Villa L, Carta C, Venditti C, Giordano A et al. Klebsiella pneumoniae ST258 producing KPC-3 identified in Italy carries novel plasmids and OmpK36/OmpK35 porin variants. Antimicrob Agents Chemother 2012;56:2143–2145 [CrossRef][PubMed]
    [Google Scholar]
  37. Schubert S, Dufke S, Sorsa J, Heesemann J. A novel integrative and conjugative element (ICE) of Escherichia coli: the putative progenitor of the Yersinia high-pathogenicity Island. Mol Microbiol 2004;51:837–848 [CrossRef][PubMed]
    [Google Scholar]
  38. Lin TL, Lee CZ, Hsieh PF, Tsai SF, Wang JT. Characterization of integrative and conjugative element ICEKp1-associated genomic heterogeneity in a Klebsiella pneumoniae strain isolated from a primary liver abscess. J Bacteriol 2008;190:515–526 [CrossRef][PubMed]
    [Google Scholar]
  39. Menard KL, Grossman AD. Selective pressures to maintain attachment site specificity of integrative and conjugative elements. PLoS Genet 2013;9:e1003623 [CrossRef][PubMed]
    [Google Scholar]
  40. Nuccio SP, Bäumler AJ. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 2007;71:551–575 [CrossRef][PubMed]
    [Google Scholar]
  41. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci USA 2015;112:E3574E3581 [CrossRef][PubMed]
    [Google Scholar]
  42. Follador R, Heinz E, Wyres KL, Ellington MJ, Kowarik M et al. The diversity of Klebsiella pneumoniae surface polysaccharides. Microb Genom 2016;2:e000073 [CrossRef][PubMed]
    [Google Scholar]
  43. Pan YJ, Lin TL, Chen CT, Chen YY, Hsieh PF et al. Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp. Sci Rep 2015;5:15573 [CrossRef][PubMed]
    [Google Scholar]
  44. Sarris PF, Zoumadakis C, Panopoulos NJ, Scoulica EV. Distribution of the putative type VI secretion system core genes in Klebsiella spp. Infect Genet Evol 2011;11:157–166 [CrossRef][PubMed]
    [Google Scholar]
  45. Watanabe S, Morimoto D, Fukumori F, Shinomiya H, Nishiwaki H et al. Identification and characterization of d-hydroxyproline dehydrogenase and Δ1-pyrroline-4-hydroxy-2-carboxylate deaminase involved in novel l-hydroxyproline metabolism of bacteria: metabolic convergent evolution. J Biol Chem 2012;287:32674–32688 [CrossRef][PubMed]
    [Google Scholar]
  46. Findlay J, Hopkins KL, Doumith M, Meunier D, Wiuff C et al. KPC enzymes in the UK: an analysis of the first 160 cases outside the North-West region. J Antimicrob Chemother 2016;71:1199–1206 [CrossRef][PubMed]
    [Google Scholar]
  47. Somorin Y, Abram F, Brennan F, O'Byrne C. The general stress response is conserved in long-term soil-persistent strains of Escherichia coli. Appl Environ Microbiol 2016;82:4628–4640 [CrossRef][PubMed]
    [Google Scholar]
  48. Miajlovic H, Smith SG. Bacterial self-defence: how Escherichia coli evades serum killing. FEMS Microbiol Lett 2014;354:1–9 [CrossRef][PubMed]
    [Google Scholar]
  49. Doorduijn DJ, Rooijakkers SH, van Schaik W, Bardoel BW. Complement resistance mechanisms of Klebsiella pneumoniae. Immunobiology 2016;221:1102–1109 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000110
Loading
/content/journal/mgen/10.1099/mgen.0.000110
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error