1887

Abstract

The emergence of antibiotic resistance is a defining challenge, and Escherichia coli is recognized as one of the leading species resistant to the antimicrobials used in human or veterinary medicine. Here, we analyse the distribution of 2172 antimicrobial-resistance (AMR) genes in 4022 E. coli to provide a population-level view of resistance in this species. By separating the resistance determinants into ‘core’ (those found in all strains) and ‘accessory’ (those variably present) determinants, we have found that, surprisingly, almost half of all E. coli do not encode any accessory resistance determinants. However, those strains that do encode accessory resistance are significantly more likely to be resistant to multiple antibiotic classes than would be expected by chance. Furthermore, by studying the available date of isolation for the E. coli genomes, we have visualized an expanding, highly interconnected network that describes how resistances to antimicrobials have co-associated within genomes over time. These data can be exploited to reveal antimicrobial combinations that are less likely to be found together, and so if used in combination may present an increased chance of suppressing the growth of bacteria and reduce the rate at which resistance factors are spread. Our study provides a complex picture of AMR in the E. coli population. Although the incidence of resistance to all studied antibiotic classes has increased dramatically over time, there exist combinations of antibiotics that could, in theory, attack the entirety of E. coli, effectively removing the possibility that discrete AMR genes will increase in frequency in the population.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000108
2017-04-06
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/mgen/3/4/mgen000108.html?itemId=/content/journal/mgen/10.1099/mgen.0.000108&mimeType=html&fmt=ahah

References

  1. Smith RD, Coast J. Antimicrobial resistance: a global response. Bull World Health Organ 2002; 80:126–133[PubMed]
    [Google Scholar]
  2. Cars O, Högberg LD, Murray M, Nordberg O, Sivaraman S et al. Meeting the challenge of antibiotic resistance. BMJ 2008; 337:a1438 [View Article][PubMed]
    [Google Scholar]
  3. de Kraker ME, Davey PG, Grundmann H. on behalf of the BURDEN study group Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Med 2011; 8:e1001104 [View Article][PubMed]
    [Google Scholar]
  4. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 2008; 46:155–164 [View Article][PubMed]
    [Google Scholar]
  5. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010; 74:417–433 [View Article][PubMed]
    [Google Scholar]
  6. Kåhrström CT. Entering a post-antibiotic era?. Nat Rev Microbiol 2013; 11:146 [View Article]
    [Google Scholar]
  7. Trabulsi LR, Keller R, Tardelli Gomes TA. Typical and atypical enteropathogenic Escherichia coli . Emerg Infect Dis 2002; 8:508–513 [View Article][PubMed]
    [Google Scholar]
  8. FDA US. National Antimicrobial Resistance Monitoring System (NARMS) – Enteric Bacteria: 2008 Executive Report Rockville, MD: US Food and Drug Administration; 2010 www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/default.htm
    [Google Scholar]
  9. Sulavik MC, Houseweart C, Cramer C, Jiwani N, Murgolo N et al. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother 2001; 45:1126–1136 [View Article][PubMed]
    [Google Scholar]
  10. Nagakubo S, Nishino K, Hirata T, Yamaguchi A. The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J Bacteriol 2002; 184:4161–4167 [View Article][PubMed]
    [Google Scholar]
  11. Nikaido H, Zgurskaya HI. AcrAB and related multidrug efflux pumps of Escherichia coli . J Mol Microbiol Biotechnol 2001; 3:215–218[PubMed]
    [Google Scholar]
  12. Nikaido H. Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 1996; 178:5853–5859 [View Article][PubMed]
    [Google Scholar]
  13. Nikaido H. Multiple antibiotic resistance and efflux. Curr Opin Microbiol 1998; 1:516–523 [View Article][PubMed]
    [Google Scholar]
  14. Piddock LJ. Multidrug-resistance efflux pumps — not just for resistance. Nat Rev Microbiol 2006; 4:629–636 [View Article][PubMed]
    [Google Scholar]
  15. Sigmund CD, Ettayebi M, Morgan EA. Antibiotic resistance mutations in 16S and 23S ribosomal RNA genes of Escherichia coli . Nucleic Acids Res 1984; 12:4653–4664 [View Article][PubMed]
    [Google Scholar]
  16. Huovinen P. Resistance to trimethoprim-sulfamethoxazole. Clin Infect Dis 2001; 32:1608–1614 [View Article][PubMed]
    [Google Scholar]
  17. Nakamura S, Nakamura M, Kojima T, Yoshida H. gyrA and gyrB mutations in quinolone-resistant strains of Escherichia coli . Antimicrob Agents Chemother 1989; 33:254–255 [View Article][PubMed]
    [Google Scholar]
  18. Benveniste R, Davies J. Mechanisms of antibiotic resistance in bacteria. Annu Rev Biochem 1973; 42:471–506 [View Article][PubMed]
    [Google Scholar]
  19. Kozak GK, Boerlin P, Janecko N, Reid-Smith RJ, Jardine C. Antimicrobial resistance in Escherichia coli isolates from swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Appl Environ Microbiol 2009; 75:559–566 [View Article][PubMed]
    [Google Scholar]
  20. Allen SE, Boerlin P, Janecko N, Lumsden JS, Barker IK et al. Antimicrobial resistance in generic Escherichia coli isolates from wild small mammals living in swine farm, residential, landfill, and natural environments in southern Ontario, Canada. Appl Environ Microbiol 2011; 77:882–888 [View Article][PubMed]
    [Google Scholar]
  21. Sayah RS, Kaneene JB, Johnson Y, Miller R. Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic- and wild-animal fecal samples, human septage, and surface water. Appl Environ Microbiol 2005; 71:1394–1404 [View Article][PubMed]
    [Google Scholar]
  22. Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z et al. The microbiome of uncontacted Amerindians. Sci Adv 2015; 1:e1500183 [View Article][PubMed]
    [Google Scholar]
  23. Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED et al. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One 2012; 7:e34953 [View Article][PubMed]
    [Google Scholar]
  24. Lescat M, Clermont O, Woerther PL, Glodt J, Dion S et al. Commensal Escherichia coli strains in Guiana reveal a high genetic diversity with host-dependant population structure. Environ Microbiol Rep 2013; 5:49–57 [View Article][PubMed]
    [Google Scholar]
  25. Pruden A, Arabi M, Storteboom HN. Correlation between upstream human activities and riverine antibiotic resistance genes. Environ Sci Technol 2012; 46:11541–11549 [View Article][PubMed]
    [Google Scholar]
  26. Skurnik D, Ruimy R, Andremont A, Amorin C, Rouquet P et al. Effect of human vicinity on antimicrobial resistance and integrons in animal faecal Escherichia coli . J Antimicrob Chemother 2006; 57:1215–1219 [View Article][PubMed]
    [Google Scholar]
  27. Blaettler L, Mertz D, Frei R, Elzi L, Widmer AF et al. Secular trend and risk factors for antimicrobial resistance in Escherichia coli isolates in Switzerland 1997-2007. Infection 2009; 37:534–539 [View Article][PubMed]
    [Google Scholar]
  28. Kronvall G. Antimicrobial resistance 1979-2009 at Karolinska hospital, Sweden: normalized resistance interpretation during a 30-year follow-up on Staphylococcus aureus and Escherichia coli resistance development. APMIS 2010; 118:621–639 [View Article][PubMed]
    [Google Scholar]
  29. Mcewen SA, Fedorka‐Cray PJ. Antimicrobial use and resistance in animals. Clin Infect Dis 2002; 34:S93–S106 [View Article]
    [Google Scholar]
  30. Jensen VF, Jakobsen L, Emborg HD, Seyfarth AM, Hammerum AM. Correlation between apramycin and gentamicin use in pigs and an increasing reservoir of gentamicin-resistant Escherichia coli . J Antimicrob Chemother 2006; 58:101–107 [View Article][PubMed]
    [Google Scholar]
  31. Tadesse DA, Zhao S, Tong E, Ayers S, Singh A et al. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950-2002. Emerg Infect Dis 2012; 18:741–749 [View Article][PubMed]
    [Google Scholar]
  32. Datta S, Wattal C, Goel N, Oberoi JK, Raveendran R et al. A ten year analysis of multi-drug resistant blood stream infections caused by Escherichia coli & Klebsiella pneumoniae in a tertiary care hospital. Indian J Med Res 2012; 135:907–912[PubMed]
    [Google Scholar]
  33. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  34. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  35. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article][PubMed]
    [Google Scholar]
  36. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article][PubMed]
    [Google Scholar]
  37. Mcarthur AG, Waglechner N, Nizam F, Yan A, Azad MA et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 2013; 57:3348–3357 [View Article][PubMed]
    [Google Scholar]
  38. Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D et al. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 2006; 12:83–88 [View Article][PubMed]
    [Google Scholar]
  39. van Dongen SM. Graph clustering by flow simulation PhD thesis, University of Utrecht, The Netherlands; 2000
    [Google Scholar]
  40. Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 2004; 20:289–290 [View Article][PubMed]
    [Google Scholar]
  41. Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal 20061695
    [Google Scholar]
  42. Garcia-Vallve S, Guzman E, Montero MA, Romeu A. HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Res 2003; 31:187–189 [View Article][PubMed]
    [Google Scholar]
  43. Boncoeur E, Durmort C, Bernay B, Ebel C, di Guilmi AM et al. PatA and PatB form a functional heterodimeric ABC multidrug efflux transporter responsible for the resistance of Streptococcus pneumoniae to fluoroquinolones. Biochemistry 2012; 51:7755–7765 [View Article][PubMed]
    [Google Scholar]
  44. Han J, Sahin O, Barton YW, Zhang Q. Key role of Mfd in the development of fluoroquinolone resistance in Campylobacter jejuni . PLoS Pathog 2008; 4:e1000083 [View Article][PubMed]
    [Google Scholar]
  45. Rakonjac J, Milic M, Savic DJ. cysB and cysE mutants of Escherichia coli K12 show increased resistance to novobiocin. Mol Gen Genet 1991; 228:307–311 [View Article][PubMed]
    [Google Scholar]
  46. Alt S, Mitchenall LA, Maxwell A, Heide L. Inhibition of DNA gyrase and DNA topoisomerase IV of Staphylococcus aureus and Escherichia coli by aminocoumarin antibiotics. J Antimicrob Chemother 2011; 66:2061–2069 [View Article][PubMed]
    [Google Scholar]
  47. Doern GV, Brueggemann AB, Blocker M, Dunne M, Holley HP et al. Clonal relationships among high-level penicillin-resistant Streptococcus pneumoniae in the United States. Clin Infect Dis 1998; 27:757–761 [View Article][PubMed]
    [Google Scholar]
  48. Zgurskaya HI, Nikaido H. Multidrug resistance mechanisms: drug efflux across two membranes. Mol Microbiol 2000; 37:219–225 [View Article][PubMed]
    [Google Scholar]
  49. Rosenberg EY, Ma D, Nikaido H. AcrD of Escherichia coli is an aminoglycoside efflux pump. J Bacteriol 2000; 182:1754–1756 [View Article][PubMed]
    [Google Scholar]
  50. Murakami S, Nakashima R, Yamashita E, Yamaguchi A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 2002; 419:587–593 [View Article][PubMed]
    [Google Scholar]
  51. Saier MH, Paulsen IT, Sliwinski MK, Pao SS, Skurray RA et al. Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FASEB J 1998; 12:265–274[PubMed]
    [Google Scholar]
  52. Paulsen IT. Multidrug efflux pumps and resistance: regulation and evolution. Curr Opin Microbiol 2003; 6:446–451 [View Article][PubMed]
    [Google Scholar]
  53. Stanford K, Agopsowicz CA, Mcallister TA. Genetic diversity and antimicrobial resistance among isolates of Escherichia coli O157: H7 from feces and hides of super-shedders and low-shedding pen-mates in two commercial beef feedlots. BMC Vet Res 2012; 8:178 [View Article][PubMed]
    [Google Scholar]
  54. Wong CS, Jelacic S, Habeeb RL, Watkins SL, Tarr PI. The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infections. N Engl J Med 2000; 342:1930–1936 [View Article][PubMed]
    [Google Scholar]
  55. Meng J, Zhao S, Doyle MP, Joseph SW. Antibiotic resistance of Escherichia coli O157:H7 and O157:NM isolated from animals, food, and humans. J Food Prot 1998; 61:1511–1514 [View Article][PubMed]
    [Google Scholar]
  56. Galland JC, Hyatt DR, Crupper SS, Acheson DW, Prevalence ADW. Prevalence, antibiotic susceptibility, and diversity of Escherichia coli O157:H7 isolates from a longitudinal study of beef cattle feedlots. Appl Environ Microbiol 2001; 67:1619–1627 [View Article][PubMed]
    [Google Scholar]
  57. Mora A, Blanco JE, Blanco M, Alonso MP, Dhabi G et al. Antimicrobial resistance of Shiga toxin (verotoxin)-producing Escherichia coli O157:H7 and non-O157 strains isolated from humans, cattle, sheep and food in Spain. Res Microbiol 2005; 156:793–806 [View Article][PubMed]
    [Google Scholar]
  58. Radu S, Ling OW, Rusul G, Karim MI, Nishibuchi M. Detection of Escherichia coli O157:H7 by multiplex PCR and their characterization by plasmid profiling, antimicrobial resistance, RAPD and PFGE analyses. J Microbiol Methods 2001; 46:131–139 [View Article][PubMed]
    [Google Scholar]
  59. Barbosa MD, Yang G, Fang J, Kurilla MG, Pompliano DL. Development of a whole-cell assay for peptidoglycan biosynthesis inhibitors. Antimicrob Agents Chemother 2002; 46:943–946 [View Article][PubMed]
    [Google Scholar]
  60. Schumacher A, Trittler R, Bohnert JA, Kümmerer K, Pagès JM et al. Intracellular accumulation of linezolid in Escherichia coli, Citrobacter freundii and Enterobacter aerogenes: role of enhanced efflux pump activity and inactivation. J Antimicrob Chemother 2007; 59:1261–1264 [View Article][PubMed]
    [Google Scholar]
  61. Ma D, Cook DN, Hearst JE, Nikaido H. Efflux pumps and drug resistance in gram-negative bacteria. Trends Microbiol 1994; 2:489–493 [View Article][PubMed]
    [Google Scholar]
  62. Hall CC, Watkins JD, Georgopapadakou NH. Effects of elfamycins on elongation factor Tu from Escherichia coli and Staphylococcus aureus . Antimicrob Agents Chemother 1989; 33:322–325 [View Article][PubMed]
    [Google Scholar]
  63. Yanagisawa T, Lee JT, Wu HC, Kawakami M. Relationship of protein structure of isoleucyl-tRNA synthetase with pseudomonic acid resistance of Escherichia coli. A proposed mode of action of pseudomonic acid as an inhibitor of isoleucyl-tRNA synthetase. J Biol Chem 1994; 269:24304–24309[PubMed]
    [Google Scholar]
  64. Assadian O, Wehse K, Hübner NO, Koburger T, Bagel S et al. Minimum inhibitory (MIC) and minimum microbicidal concentration (MMC) of polihexanide and triclosan against antibiotic sensitive and resistant Staphylococcus aureus and Escherichia coli strains. GMS Krankenhhyg Interdiszip 2011; 6:Doc06 [View Article][PubMed]
    [Google Scholar]
  65. Erb A, Stürmer T, Marre R, Brenner H. Prevalence of antibiotic resistance in Escherichia coli: overview of geographical, temporal, and methodological variations. Eur J Clin Microbiol Infect Dis 2007; 26:83–90 [View Article][PubMed]
    [Google Scholar]
  66. Johnson L, Sabel A, Burman WJ, Everhart RM, Rome M et al. Emergence of fluoroquinolone resistance in outpatient urinary Escherichia coli isolates. Am J Med 2008; 121:876–884 [View Article][PubMed]
    [Google Scholar]
  67. Zilberberg MD, Shorr AF. Secular trends in gram-negative resistance among urinary tract infection hospitalizations in the United States, 2000-2009. Infect Control Hosp Epidemiol 2013; 34:940–946 [View Article][PubMed]
    [Google Scholar]
  68. Spadafino JT, Cohen B, Liu J, Larson E. Temporal trends and risk factors for extended-spectrum beta-lactamase-producing Escherichia coli in adults with catheter-associated urinary tract infections. Antimicrob Resist Infect Control 2014; 3:39 [View Article][PubMed]
    [Google Scholar]
  69. Kim HB, Park CH, Kim CJ, Kim EC, Jacoby GA et al. Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob Agents Chemother 2009; 53:639–645 [View Article][PubMed]
    [Google Scholar]
  70. Wong PH, von Krosigk M, Roscoe DL, Lau TT, Yousefi M et al. Antimicrobial co-resistance patterns of gram-negative bacilli isolated from bloodstream infections: a longitudinal epidemiological study from 2002-2011. BMC Infect Dis 2014; 14:393 [View Article][PubMed]
    [Google Scholar]
  71. Lockhart SR, Abramson MA, Beekmann SE, Gallagher G, Riedel S et al. Antimicrobial resistance among Gram-negative bacilli causing infections in intensive care unit patients in the United States between 1993 and 2004. J Clin Microbiol 2007; 45:3352–3359 [View Article][PubMed]
    [Google Scholar]
  72. Chen L, Todd R, Kiehlbauch J, Walters M, Kallen A. Notes from the field: pan-resistant new delhi Metallo-Beta-Lactamase-Producing Klebsiella pneumoniae - Washoe county, Nevada, 2016. MMWR Morb Mortal Wkly Rep 2017; 66:33 [View Article][PubMed]
    [Google Scholar]
  73. Kumar A, Safdar N, Kethireddy S, Chateau D. A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med 2010; 38:1651–1664 [View Article][PubMed]
    [Google Scholar]
  74. Safdar N, Handelsman J, Maki DG. Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. Lancet Infect Dis 2004; 4:519–527 [View Article][PubMed]
    [Google Scholar]
  75. Paul M, Lador A, Grozinsky-Glasberg S, Leibovici L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev 2014; 1:Cd003344 [View Article][PubMed]
    [Google Scholar]
  76. Raman G, Avendano E, Berger S, Menon V. Appropriate initial antibiotic therapy in hospitalized patients with gram-negative infections: systematic review and meta-analysis. BMC Infect Dis 2015; 15:395 [View Article][PubMed]
    [Google Scholar]
  77. Micek ST, Lloyd AE, Ritchie DJ, Reichley RM, Fraser VJ et al. Pseudomonas aeruginosa bloodstream infection: importance of appropriate initial antimicrobial treatment. Antimicrob Agents Chemother 2005; 49:1306–1311 [View Article][PubMed]
    [Google Scholar]
  78. Zilberberg MD, Shorr AF, Micek ST, Vazquez-Guillamet C, Kollef MH. Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in Gram-negative severe sepsis and septic shock: a retrospective cohort study. Crit Care 2014; 18:596 [View Article][PubMed]
    [Google Scholar]
  79. Vestergaard M, Paulander W, Marvig RL, Clasen J, Jochumsen N et al. Antibiotic combination therapy can select for broad-spectrum multidrug resistance in Pseudomonas aeruginosa . Int J Antimicrob Agents 2016; 47:48–55 [View Article][PubMed]
    [Google Scholar]
  80. Goldstone RJ, Harris S, Smith DG. Genomic content typifying a prevalent clade of bovine mastitis-associated Escherichia coli . Sci Rep 2016; 6:30115 [View Article][PubMed]
    [Google Scholar]
  81. Haupt I, Thrum H. Bacterial resistance to streptothricins. J Basic Microbiol 1985; 25:335–339 [View Article][PubMed]
    [Google Scholar]
  82. Yarlagadda V, Manjunath GB, Sarkar P, Akkapeddi P, Paramanandham K et al. Glycopeptide antibiotic to overcome the intrinsic resistance of Gram-negative bacteria. ACS Infect Dis 2016; 2:132–139 [View Article][PubMed]
    [Google Scholar]
  83. de Cueto M, López L, Hernández JR, Morillo C, Pascual A. In vitro activity of fosfomycin against extended-spectrum-β-lactamase-producing Escherichia coli and Klebsiella pneumoniae: comparison of susceptibility testing procedures. Antimicrob Agents Chemother 2006; 50:368–370 [View Article][PubMed]
    [Google Scholar]
  84. Douthwaite S. Interaction of the antibiotics clindamycin and lincomycin with Escherichia coli 23S ribosomal RNA. Nucleic Acids Res 1992; 20:4717–4720 [View Article][PubMed]
    [Google Scholar]
  85. Suter W, Rosselet A, Knüsel F. Mode of action of quindoxin and substituted quinoxaline-di-N-oxides on Escherichia coli . Antimicrob Agents Chemother 1978; 13:770–783 [View Article][PubMed]
    [Google Scholar]
  86. Salmon SA, Watts JL. Minimum inhibitory concentration determinations for various antimicrobial agents against 1570 bacterial isolates from turkey poults. Avian Dis 2000; 44:85–98 [View Article][PubMed]
    [Google Scholar]
  87. Drews J, Georgopoulos A, Laber G, Schütze E, Unger J. Antimicrobial activities of 81.723 hfu, a new pleuromutilin derivative. Antimicrob Agents Chemother 1975; 7:507–516 [View Article][PubMed]
    [Google Scholar]
  88. Rodríguez-Verdugo A, Gaut BS, Tenaillon O. Evolution of Escherichia coli rifampicin resistance in an antibiotic-free environment during thermal stress. BMC Evol Biol 2013; 13:50 [View Article][PubMed]
    [Google Scholar]
  89. Andremont A, Gerbaud G, Courvalin P. Plasmid-mediated high-level resistance to erythromycin in Escherichia coli . Antimicrob Agents Chemother 1986; 29:515–518 [View Article][PubMed]
    [Google Scholar]
  90. Perreten V, Boerlin P. A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland. Antimicrob Agents Chemother 2003; 47:1169–1172 [View Article][PubMed]
    [Google Scholar]
  91. Aagaard J, Gasser T, Rhodes P, Madsen PO. MICs of ciprofloxacin and trimethoprim for Escherichia coli: influence of pH, inoculum size and various body fluids. Infection 1991; 19:S167–S169 [View Article][PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000108
Loading
/content/journal/mgen/10.1099/mgen.0.000108
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error