1887

Abstract

In 1885, Theodor Escherich first described the Bacillus coli commune, which was subsequently renamed Escherichia coli. We report the complete genome sequence of this original strain (NCTC 86). The 5 144 392 bp circular chromosome encodes the genes for 4805 proteins, which include antigens, virulence factors, antimicrobial-resistance factors and secretion systems, of a commensal organism from the pre-antibiotic era. It is located in the E. coli A subgroup and is closely related to E. coli K-12 MG1655. E. coli strain NCTC 86 and the non-pathogenic K-12, C, B and HS strains share a common backbone that is largely co-linear. The exception is a large 2 803 932 bp inversion that spans the replication terminus from gmhB to clpB. Comparison with E. coli K-12 reveals 41 regions of difference (577 351 bp) distributed across the chromosome. For example, and contrary to current dogma, E. coli NCTC 86 includes a nine gene sil locus that encodes a silver-resistance efflux pump acquired before the current widespread use of silver nanoparticles as an antibacterial agent, possibly resulting from the widespread use of silver utensils and currency in Germany in the 1800s. In summary, phylogenetic comparisons with other E. coli strains confirmed that the original strain isolated by Escherich is most closely related to the non-pathogenic commensal strains. It is more distant from the root than the pathogenic organisms E. coli 042 and O157 : H7; therefore, it is not an ancestral state for the species.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000106
2017-03-23
2019-09-23
Loading full text...

Full text loading...

/deliver/fulltext/mgen/3/3/mgen000106.html?itemId=/content/journal/mgen/10.1099/mgen.0.000106&mimeType=html&fmt=ahah

References

  1. Clifton CE, Cleary JP. Oxidation-reduction potentials and ferricyanide reducing activities in glucose-peptone cultures and suspensions of Escherichia coli. J Bacteriol 1934;28:561–569[PubMed]
    [Google Scholar]
  2. D'Herelle FH. Sur une microbe invisible antagoniste des bacilles dysentériques. C R Acad Sci 1917;165:373–375
    [Google Scholar]
  3. Lederberg J, Tatum EL. Gene recombination in Escherichia coli. Nature 1946;158:558 [CrossRef][PubMed]
    [Google Scholar]
  4. Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB et al. Escherichia coliandSalmonella: Cellular and Molecular Biology Washington, DC: ASM Press; 1996; pp.123–145
    [Google Scholar]
  5. Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A. Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 2009;8:17 [CrossRef][PubMed]
    [Google Scholar]
  6. Migula W. Bacteriaceae (Stäbchenbacterien). Die Natürlichen Pflanzenfamilien Leipzig: W. Engelmann; 1895; pp.20–30
    [Google Scholar]
  7. Escherich T. Die darmbakterien des neugeborenen und säuglings. Fortsch Der Med 1885;3:547–554
    [Google Scholar]
  8. Hyman M, Mann LT. The nitrite reaction as an indicator of urinary infection. J Urol 1929;521:
    [Google Scholar]
  9. Bray J. Isolation of antigenically homogeneous strains of Bact . coli neapolitanum from summer diarrhœa of infants. J Pathol Bacteriol 1945;57:239–247 [CrossRef]
    [Google Scholar]
  10. Hill CW, Gray JA. Effects of chromosomal inversion on cell fitness in Escherichia coli K-12. Genetics 1988;119:771–778[PubMed]
    [Google Scholar]
  11. Bergholz TM, Wick LM, Qi W, Riordan JT, Ouellette LM et al. Global transcriptional response of Escherichia coli O157:H7 to growth transitions in glucose minimal medium. BMC Microbiol 2007;7:97 [CrossRef][PubMed]
    [Google Scholar]
  12. Chaudhuri RR, Henderson IR. The evolution of the Escherichia coli phylogeny. Infect Genet Evol 2012;12:214–226 [CrossRef][PubMed]
    [Google Scholar]
  13. Lederberg J. Genetic studies with bacteria. In Dunn LC. (editor) Genetics in the 20th Century New York: Macmillan; 1951; pp.263–289
    [Google Scholar]
  14. Ren CP, Chaudhuri RR, Fivian A, Bailey CM, Antonio M et al. The ETT2 gene cluster, encoding a second type III secretion system from Escherichia coli, is present in the majority of strains but has undergone widespread mutational attrition. J Bacteriol 2004;186:3547–3560 [CrossRef][PubMed]
    [Google Scholar]
  15. Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UC et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 1998;396:133–140 [CrossRef][PubMed]
    [Google Scholar]
  16. Stephens RS, Kalman S, Lammel C, Fan J, Marathe R et al. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 1998;282:754–759 [CrossRef][PubMed]
    [Google Scholar]
  17. Garrity G, Brenner DJ, Krieg NR, Staley JR. Bergey's Manual of Systematic Bacteriology New York: Springer; 2005
    [Google Scholar]
  18. Orskov I, Orskov F, Jann B, Jann K. Serology, chemistry, and genetics of O and K antigens of Escherichia coli. Bacteriol Rev 1977;41:667–710[PubMed]
    [Google Scholar]
  19. Kauffmann F. Zur serologie der coli-gruppe. Acta Pathol Microbiol Scand 1944;21:20–45 [CrossRef]
    [Google Scholar]
  20. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem 2002;71:635–700 [CrossRef][PubMed]
    [Google Scholar]
  21. Hämmerling G, Lüderitz O, Westphal O, Mäkelä PH. Structural investigations on the core polysaccharide of Escherichia coli 0100. Eur J Biochem 1971;22:331–344 [CrossRef][PubMed]
    [Google Scholar]
  22. Amor K, Heinrichs DE, Frirdich E, Ziebell K, Johnson RP et al. Distribution of core oligosaccharide types in lipopolysaccharides from Escherichia coli. Infect Immun 2000;68:1116–1124 [CrossRef][PubMed]
    [Google Scholar]
  23. Santos MF, New RR, Andrade GR, Ozaki CY, Sant'anna OA et al. Lipopolysaccharide as an antigen target for the formulation of a universal vaccine against Escherichia coli O111 strains. Clin Vaccine Immunol 2010;17:1772–1780 [CrossRef][PubMed]
    [Google Scholar]
  24. Iguchi A, Iyoda S, Kikuchi T, Ogura Y, Katsura K et al. A complete view of the genetic diversity of the Escherichia coli O-antigen biosynthesis gene cluster. DNA Res 2015;22:101–107 [CrossRef][PubMed]
    [Google Scholar]
  25. Feldman MF, Marolda CL, Monteiro MA, Perry MB, Parodi AJ et al. The activity of a putative polyisoprenol-linked sugar translocase (Wzx) involved in Escherichia coli O antigen assembly is independent of the chemical structure of the O repeat. J Biol Chem 1999;274:35129–35138 [CrossRef][PubMed]
    [Google Scholar]
  26. Grozdanov L, Zähringer U, Blum-Oehler G, Brade L, Henne A et al. A single nucleotide exchange in the wzy gene is responsible for the semirough O6 lipopolysaccharide phenotype and serum sensitivity of Escherichia coli strain Nissle 1917. J Bacteriol 2002;184:5912–5925 [CrossRef][PubMed]
    [Google Scholar]
  27. Marolda CL, Feldman MF, Valvano MA. Genetic organization of the O7-specific lipopolysaccharide biosynthesis cluster of Escherichia coli VW187 (O7:K1). Microbiology 1999;145:2485–2495 [CrossRef][PubMed]
    [Google Scholar]
  28. Browning DF, Wells TJ, França FL, Morris FC, Sevastsyanovich YR et al. Laboratory adapted Escherichia coli K-12 becomes a pathogen of Caenorhabditis elegans upon restoration of O antigen biosynthesis. Mol Microbiol 2013;87:939–950 [CrossRef][PubMed]
    [Google Scholar]
  29. Stevenson G, Neal B, Liu D, Hobbs M, Packer NH et al. Structure of the O antigen of Escherichia coli K-12 and the sequence of its rfb gene cluster. J Bacteriol 1994;176:4144–4156 [CrossRef][PubMed]
    [Google Scholar]
  30. Whitfield C. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 2006;75:39–68 [CrossRef][PubMed]
    [Google Scholar]
  31. Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM. Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 2008;13:1205–1218 [CrossRef][PubMed]
    [Google Scholar]
  32. Weinberg ED. Iron availability and infection. Biochim Biophys Acta 2009;1790:600–605 [CrossRef][PubMed]
    [Google Scholar]
  33. Andrews SC, Robinson AK, Rodríguez-Quiñones F. Bacterial iron homeostasis. FEMS Microbiol Rev 2003;27:215–237 [CrossRef][PubMed]
    [Google Scholar]
  34. Schubert S, Rakin A, Heesemann J. The Yersinia high-pathogenicity island (HPI): evolutionary and functional aspects. Int J Med Microbiol 2004;294:83–94 [CrossRef][PubMed]
    [Google Scholar]
  35. Koh EI, Henderson JP. Microbial copper-binding siderophores at the host-pathogen interface. J Biol Chem 2015;290:18967–18974 [CrossRef][PubMed]
    [Google Scholar]
  36. Clark HW, Gage SD. On the bactericidal action of copper. Public Health Pap Rep 1905;31:175–204[PubMed]
    [Google Scholar]
  37. Macomber L, Imlay JA. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci USA 2009;106:8344–8349 [CrossRef][PubMed]
    [Google Scholar]
  38. Chaturvedi KS, Hung CS, Crowley JR, Stapleton AE, Henderson JP. The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat Chem Biol 2012;8:731–736 [CrossRef][PubMed]
    [Google Scholar]
  39. Gupta A, Matsui K, Lo JF, Silver S. Molecular basis for resistance to silver cations in Salmonella. Nat Med 1999;5:183–188 [CrossRef][PubMed]
    [Google Scholar]
  40. Sütterlin S, Edquist P, Sandegren L, Adler M, Tängdén T et al. Silver resistance genes are overrepresented among Escherichia coli isolates with CTX-M production. Appl Environ Microbiol 2014;80:6863–6869 [CrossRef][PubMed]
    [Google Scholar]
  41. Martinez-Jéhanne V, Pichon C, du Merle L, Poupel O, Cayet N et al. Role of the vpe carbohydrate permease in Escherichia coli urovirulence and fitness in vivo. Infect Immun 2012;80:2655–2666 [CrossRef][PubMed]
    [Google Scholar]
  42. Bernier-Fébreau C, du Merle L, Turlin E, Labas V, Ordonez J et al. Use of deoxyribose by intestinal and extraintestinal pathogenic Escherichia coli strains: a metabolic adaptation involved in competitiveness. Infect Immun 2004;72:6151–6156 [CrossRef][PubMed]
    [Google Scholar]
  43. Lalioui L, Le Bouguénec C. afa-8 gene cluster is carried by a pathogenicity island inserted into the tRNA(Phe) of human and bovine pathogenic Escherichia coli isolates. Infect Immun 2001;69:937–948 [CrossRef][PubMed]
    [Google Scholar]
  44. Abby SS, Cury J, Guglielmini J, Néron B, Touchon M et al. Identification of protein secretion systems in bacterial genomes. Sci Rep 2016;6:23080 [CrossRef][PubMed]
    [Google Scholar]
  45. Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala'aldeen D. Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 2004;68:692–744 [CrossRef][PubMed]
    [Google Scholar]
  46. Sheikh J, Czeczulin JR, Harrington S, Hicks S, Henderson IR et al. A novel dispersin protein in enteroaggregative Escherichia coli. J Clin Invest 2002;110:1329–1337 [CrossRef][PubMed]
    [Google Scholar]
  47. Nataro JP. Enteroaggregative Escherichia coli pathogenesis. Curr Opin Gastroenterol 2005;21:4–8[PubMed]
    [Google Scholar]
  48. Tauschek M, Gorrell RJ, Strugnell RA, Robins-Browne RM. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc Natl Acad Sci USA 2002;99:7066–7071 [CrossRef][PubMed]
    [Google Scholar]
  49. Leo JC, Oberhettinger P, Schütz M, Linke D. The inverse autotransporter family: intimin, invasin and related proteins. Int J Med Microbiol 2015;305:276–282 [CrossRef][PubMed]
    [Google Scholar]
  50. Brzuszkiewicz E, Brüggemann H, Liesegang H, Emmerth M, Olschläger T et al. How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci USA 2006;103:12879–12884 [CrossRef][PubMed]
    [Google Scholar]
  51. Johnson TJ, Kariyawasam S, Wannemuehler Y, Mangiamele P, Johnson SJ et al. The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. J Bacteriol 2007;189:3228–3236 [CrossRef][PubMed]
    [Google Scholar]
  52. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S et al. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 2009;5:e1000344 [CrossRef][PubMed]
    [Google Scholar]
  53. Hood RD, Singh P, Hsu F, Güvener T, Carl MA et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 2010;7:25–37 [CrossRef][PubMed]
    [Google Scholar]
  54. Nuccio SP, Bäumler AJ. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 2007;71:551–575 [CrossRef][PubMed]
    [Google Scholar]
  55. Méric G, Hitchings MD, Pascoe B, Sheppard SK. From Escherich to the Escherichia coli genome. Lancet Infect Dis 2016;16:634–636 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000106
Loading
/content/journal/mgen/10.1099/mgen.0.000106
Loading

Data & Media loading...

Supplementary File 1

PDF

Supplementary File 2

Supplementary File 3

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error