1887

Abstract

Fungi interact closely with bacteria, both on the surfaces of the hyphae and within their living tissues (i.e. endohyphal bacteria, EHB). These EHB can be obligate or facultative symbionts and can mediate diverse phenotypic traits in their hosts. Although EHB have been observed in many lineages of fungi, it remains unclear how widespread and general these associations are, and whether there are unifying ecological and genomic features can be found across EHB strains as a whole. We cultured 11 bacterial strains after they emerged from the hyphae of diverse Ascomycota that were isolated as foliar endophytes of cupressaceous trees, and generated nearly complete genome sequences for all. Unlike the genomes of largely obligate EHB, the genomes of these facultative EHB resembled those of closely related strains isolated from environmental sources. Although all analysed genomes encoded structures that could be used to interact with eukaryotic hosts, pathways previously implicated in maintenance and establishment of EHB symbiosis were not universally present across all strains. Independent isolation of two nearly identical pairs of strains from different classes of fungi, coupled with recent experimental evidence, suggests horizontal transfer of EHB across endophytic hosts. Given the potential for EHB to influence fungal phenotypes, these genomes could shed light on the mechanisms of plant growth promotion or stress mitigation by fungal endophytes during the symbiotic phase, as well as degradation of plant material during the saprotrophic phase. As such, these findings contribute to the illumination of a new dimension of functional biodiversity in fungi.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000101
2017-02-28
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/mgen/3/2/mgen000101.html?itemId=/content/journal/mgen/10.1099/mgen.0.000101&mimeType=html&fmt=ahah

References

  1. Sachs JL, Skophammer RG, Regus JU. Evolutionary transitions in bacterial symbiosis. Proc Natl Acad Sci USA 2011;108:10800–10807 [CrossRef][PubMed]
    [Google Scholar]
  2. Schulz F, Horn M. Intranuclear bacteria: inside the cellular control center of eukaryotes. Trends Cell Biol 2015;25:339–346 [CrossRef][PubMed]
    [Google Scholar]
  3. Arendt KR, Hockett KL, Araldi-Brondolo SJ, Baltrus DA, Arnold AE. Isolation of endohyphal bacteria from foliar Ascomycota and in vitro establishment of their symbiotic associations. Appl Environ Microbiol 2016;82:2943–2949 [CrossRef][PubMed]
    [Google Scholar]
  4. Hoffman MT, Arnold AE. Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 2010;76:4063–4075 [CrossRef][PubMed]
    [Google Scholar]
  5. Naito M, Morton JB, Pawlowska TE. Minimal genomes of mycoplasma-related endobacteria are plastic and contain host-derived genes for sustained life within Glomeromycota. Proc Natl Acad Sci USA 2015;112:7791–7796 [CrossRef][PubMed]
    [Google Scholar]
  6. Partida-Martinez LP, Hertweck C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 2005;437:884–888 [CrossRef][PubMed]
    [Google Scholar]
  7. Torres-Cortés G, Ghignone S, Bonfante P, Schüßler A. Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: transkingdom gene transfer in an ancient mycoplasma-fungus association. Proc Natl Acad Sci USA 2015;112:7785–7790 [CrossRef][PubMed]
    [Google Scholar]
  8. Salvioli A, Ghignone S, Novero M, Navazio L, Venice F et al. Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. ISME J 2015;10:130–144 [CrossRef][PubMed]
    [Google Scholar]
  9. Ruiz-Herrera J, Leon-Ramirez C, Vera-Nunez A, Sanchez-Arreguin A, Ruiz-Medrano R et al. A novel intracellular nitrogen-fixing symbiosis made by Ustilago maydis and Bacillus spp. New Phytol 2015;297:769–777
    [Google Scholar]
  10. Rodriguez RJ, White JF Jr, Arnold AE, Redman RS. Fungal endophytes: diversity and functional roles. New Phytol 2009;182:314–330 [CrossRef][PubMed]
    [Google Scholar]
  11. Hoffman MT, Gunatilaka MK, Wijeratne K, Gunatilaka L, Arnold AE. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLoS One 2013;8:e73132 [CrossRef][PubMed]
    [Google Scholar]
  12. Arendt KR. Symbiosis establishment and ecological effects of endohyphal bacteria on foliar fungi. MS Thesis, University of Arizona; 2015
  13. Shaffer JP, Sarmiento C, Zalamea P-C, Gallery RE, Davis AS et al. Diversity, specificity, and phylogenetic relationships of endohyphal bacteria in fungi that inhabit tropical seeds and leaves. Front Ecol Evol 2016;4:116 [CrossRef]
    [Google Scholar]
  14. Lackner G, Moebius N, Partida-Martinez LP, Boland S, Hertweck C. Evolution of an endofungal lifestyle: deductions from the Burkholderia rhizoxinica genome. BMC Genomics 2011;12:210 [CrossRef][PubMed]
    [Google Scholar]
  15. Moebius N, Üzüm Z, Dijksterhuis J, Lackner G, Hertweck C. Active invasion of bacteria into living fungal cells. Elife 2014;3:e03007 [CrossRef][PubMed]
    [Google Scholar]
  16. Lackner G, Moebius N, Hertweck C. Endofungal bacterium controls its host by an hrp type III secretion system. ISME J 2011;5:252–261 [CrossRef][PubMed]
    [Google Scholar]
  17. Leone MR, Lackner G, Silipo A, Lanzetta R, Molinaro A et al. An unusual galactofuranose lipopolysaccharide that ensures the intracellular survival of toxin-producing bacteria in their fungal host. Angew Chem Int Ed Engl 2010;49:7476–7480 [CrossRef][PubMed]
    [Google Scholar]
  18. Partida-Martinez LP, Monajembashi S, Greulich K, Hertweck C. Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism. Curr Biol 2007;17:773–777 [CrossRef][PubMed]
    [Google Scholar]
  19. Vannini C, Carpentieri A, Salvioli A, Novero M, Marsoni M et al. An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts. New Phytol 2016;11:265–275 [CrossRef]
    [Google Scholar]
  20. Spraker JE, Sanchez LM, Lowe TM, Dorrestein NP, Keller NP. Ralstonia solanacearum lipopeptide induces chlamydospore development in fungi and facilitates bacterial entry into fungal tissues. ISME J 2016;10:2317–2330 [CrossRef][PubMed]
    [Google Scholar]
  21. Martinez-Cano DJ, Reyes-Prieto M, Martinez-Romero E, Partida-Martinez LP, Latorre A et al. Evolution of small prokaryotic genomes. Front Microbiol 2015;5:742
    [Google Scholar]
  22. Giovannoni SJ, Thrash JC, Temperton B. Implications of streamlining theory for microbial ecology. ISME J 2014;8:1553–1565 [CrossRef]
    [Google Scholar]
  23. Morris JJ, Lenski RE, Zinser ER. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. MBio 2012;3:e00036-12 [CrossRef][PubMed]
    [Google Scholar]
  24. Fujimura R, Nishimura A, Ohshima S, Sato Y, Nishizawa Y et al. Draft genome sequence of the betaproteobacterial endosymbiont associated with the fungus Mortierella elongata FMR23-6. Genome Announc 2014;2:e01272-14
    [Google Scholar]
  25. Barre A. MolliGen, a database dedicated to the comparative genomics of Mollicutes. Nucleic Acids Res 2004;32:D307–D310 [CrossRef]
    [Google Scholar]
  26. Bentkowski P, van Oosterhout C, Mock T. A model of genome size evolution for prokaryotes in stable and fluctuating environments. Genome Biol Evol 2015;7:2344–2351 [CrossRef][PubMed]
    [Google Scholar]
  27. Eid J, Fehr A, Gray J, Luong K, Lyle J et al. Real-time DNA sequencing from single polymerase molecules. Science 2009;323:133–138 [CrossRef][PubMed]
    [Google Scholar]
  28. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013;10:563–569 [CrossRef]
    [Google Scholar]
  29. Huntemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D et al. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4). Stand Genomic Sci 2015;10:86
    [Google Scholar]
  30. Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD et al. GenePrimP: a gene prediction improvement pipeline for prokaryotic genomes. Nat Meth 2010;7:455–457 [CrossRef]
    [Google Scholar]
  31. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997;25:955–964 [CrossRef][PubMed]
    [Google Scholar]
  32. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007;35:7188–7196 [CrossRef][PubMed]
    [Google Scholar]
  33. Nawrocki EP, Kolbe DL, Eddy SR. Infernal 1.0: inference of RNA alignments. Bioinformatics 2009;25:1335–1337 [CrossRef][PubMed]
    [Google Scholar]
  34. Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K et al. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 2009;25:2271–2278 [CrossRef][PubMed]
    [Google Scholar]
  35. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  36. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012;61:539–542 [CrossRef][PubMed]
    [Google Scholar]
  37. Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol 2014;31:1077–1088 [CrossRef][PubMed]
    [Google Scholar]
  38. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012;28:1647–1649 [CrossRef][PubMed]
    [Google Scholar]
  39. Baltrus DA, Dougherty K, Beckstrom-Sternberg SM, Beckstrom-Sternberg JS, Foster JT. Incongruence between multi-locus sequence analysis (MLSA) and whole-genome-based phylogenies: Pseudomonas syringae pathovar pisi as a cautionary tale. Mol Plant Pathol 2014;15:461–465 [CrossRef][PubMed]
    [Google Scholar]
  40. Nazir R, Hansen MA, Sørensen S, van Elsas JD. Draft genome sequence of the soil bacterium B urkholderia terrae strain BS001, which interacts with fungal surface structures. J Bacteriol 2012;194:4480–4481 [CrossRef][PubMed]
    [Google Scholar]
  41. van Elsas JD. Burkholderia terrae BS001 migrates proficiently with diverse fungal hosts through soil and provides protection from antifungal agents. Front Microbiol 2014;5:598 [CrossRef][PubMed]
    [Google Scholar]
  42. Ghignone S, Salvioli A, Anca I, Lumini E, Ortu G et al. The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions. ISME J 2011;6:136–145 [CrossRef][PubMed]
    [Google Scholar]
  43. Grote J, Thrash JC, Huggett MJ, Landry ZC, Carini P et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. MBio 2012;3:e00252-12 [CrossRef][PubMed]
    [Google Scholar]
  44. Costa TRD, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 2015;13:343–359 [CrossRef]
    [Google Scholar]
  45. Burstein D, Amaro F, Zusman T, Lifshitz Z, Cohen O et al. Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires. Nat Genet 2016;48:167–175 [CrossRef][PubMed]
    [Google Scholar]
  46. Matz C, Moreno AM, Alhede M, Manefield M, Hauser AR et al. Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae. ISME J 2008;2:843–852 [CrossRef][PubMed]
    [Google Scholar]
  47. van der Henst C, Scrignari T, Maclachlan C, Blokesch M. An intracellular replication niche for Vibrio cholera in the amoeba Acanthamoeba castellanii. ISME J 2015;10:897–910 [CrossRef][PubMed]
    [Google Scholar]
  48. Delepelaire P. Type I secretion in gram-negative bacteria. Biochim Biophys Acta 2004;1694:149–161 [CrossRef][PubMed]
    [Google Scholar]
  49. Korotkov KV, Sandkvist M, Hol WGJ. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Micro 2012;10:336–351
    [Google Scholar]
  50. Souza DP, Oka GU, Alvarez-Martinez CE, Bisson-Filho AW, Dunger G et al. Bacterial killing via a type IV secretion system. Nat Commun 2015;6:6453 [CrossRef][PubMed]
    [Google Scholar]
  51. Mazur A, Koper P. Rhizobial plasmids — replication, structure and biological role. Cent Eur J Biol 2012;7:571–586 [CrossRef]
    [Google Scholar]
  52. Basler M. Type VI secretion system: secretion by a contractile nanomachine. Philos Trans R Soc Lond B Biol Sci 2015;370:20150021 [CrossRef][PubMed]
    [Google Scholar]
  53. Winsor GL, Khaira B, Van Rossum T, Lo R, Whiteside MD et al. The Burkholderia Genome Database: facilitating flexible gene queries and comparative analyses. Bioinformatics 2008;24:2803–2804 [CrossRef][PubMed]
    [Google Scholar]
  54. Ul Haq I, Graupner K, Nazir R, van Elsas JD. The genome of the fungal-interactive soil bacterium Burkholderia terrae BS001 – a plethora of outstanding interactive capabilities unveiled. Genome Biol Evol 2014;6:1652–1668 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000101
Loading
/content/journal/mgen/10.1099/mgen.0.000101
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error