1887

Abstract

For many infections transmitting to humans from reservoirs in nature, disease dispersal patterns over space and time are largely unknown. Here, a reversed genomics approach helped us understand disease dispersal and yielded insight into evolution and biological properties of Francisella tularensis, the bacterium causing tularemia. We whole-genome sequenced 67 strains and characterized by single-nucleotide polymorphism assays 138 strains, collected from individuals infected 1947-2012 across Western Europe. We used the data for phylogenetic, population genetic and geographical network analyses. All strains (n=205) belonged to a monophyletic population of recent ancestry not found outside Western Europe. Most strains (n=195) throughout the study area were assigned to a star-like phylogenetic pattern indicating that colonization of Western Europe occurred via clonal expansion. In the East of the study area, strains were more diverse, consistent with a founder population spreading from east to west. The relationship of genetic and geographic distance within the F. tularensis population was complex and indicated multiple long-distance dispersal events. Mutation rate estimates based on year of isolation indicated null rates; in outbreak hotspots only, there was a rate of 0.4 mutations/genome/year. Patterns of nucleotide substitution showed marked AT mutational bias suggestive of genetic drift. These results demonstrate that tularemia has moved from east to west in Europe and that F. tularensis has a biology characterized by long-range geographical dispersal events and mostly slow, but variable, replication rates. The results indicate that mutation-driven evolution, a resting survival phase, genetic drift and long-distance geographical dispersal events have interacted to generate genetic diversity within this species.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000100
2016-12-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/12/mgen000100.html?itemId=/content/journal/mgen/10.1099/mgen.0.000100&mimeType=html&fmt=ahah

References

  1. Afset J. E., Larssen K. W., Bergh K., Lärkeryd A., Sjödin A., Johansson A., Forsman M.. 2015; Phylogeographical pattern of Francisella tularensis in a nationwide outbreak of tularaemia in Norway, 2011. Euro Surveill20:9–14 [CrossRef][PubMed]
    [Google Scholar]
  2. Alland D., Whittam T. S., Murray M. B., Cave M. D., Hazbon M. H., Dix K., Kokoris M., Duesterhoeft A., Eisen J. A. et al. 2003; Modeling bacterial evolution with comparative-genome-based marker systems: application to Mycobacterium tuberculosis evolution and pathogenesis. J Bacteriol185:3392–3399 [CrossRef][PubMed]
    [Google Scholar]
  3. Allue M., Sopeña C. R., Gallardo M. T., Mateos L., Vian E., García M. J., Ramos J., Berjón A. C., Viña M. C. et al. 2008; Tularaemia outbreak in Castilla y León, Spain, 2007 an update. Euro Surveill13:http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=18948[PubMed]
    [Google Scholar]
  4. Ariza-Miguel J., Johansson A., Fernández-Natal M. I, Martínez-Nistal C., Orduña A., Rodríguez-Ferri E. F., Hernández M., Rodríguez-Lázaro D.. 2014; Molecular investigation of tularemia outbreaks, Spain, 1997–2008. Emerg Infect Dis20:754–761 [CrossRef][PubMed]
    [Google Scholar]
  5. Birdsell D. N., Pearson T., Price E. P., Hornstra H. M., Nera R. D., Stone N., Gruendike J., Kaufman E. L., Pettus A. H. et al. 2012; Melt analysis of mismatch amplification mutation assays (Melt-MAMA): a functional study of a cost-effective SNP genotyping assay in bacterial models. PLoS One7:e32866 [CrossRef][PubMed]
    [Google Scholar]
  6. Burrows S. M., Elbert W., Lawrence M. G., Pöschl U.. 2009; Bacteria in the global atmosphere – Part 1: Review and synthesis of literature data for different ecosystems. Atmos Chem Phys Discuss9:10777–10827 [CrossRef]
    [Google Scholar]
  7. Correspondent 1947; Foreign letters – First Cases of Tularemia in France. J Am Med Assoc135:176
    [Google Scholar]
  8. Cui Y., Yu C., Yan Y., Li D., Li Y., Jombart T., Weinert L. A., Wang Z., Guo Z. et al. 2013; Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proc Natl Acad Sci U S A110:577–582 [CrossRef][PubMed]
    [Google Scholar]
  9. Dahlstrand S., Ringertz O., Zetterberg B.. 1971; Airborne tularemia in Sweden. Scand J Infect Dis3:7–16 [CrossRef][PubMed]
    [Google Scholar]
  10. Dempsey M. P., Dobson M., Zhang C., Zhang M., Lion C., Gutiérrez-Martín C. B., Iwen P. C., Fey P. D., Olson M. E. et al. 2007; Genomic deletion marking an emerging subclone of Francisella tularensis subsp. holarctica in France and the Iberian Peninsula. Appl Environ Microbiol73:7465–7470 [CrossRef][PubMed]
    [Google Scholar]
  11. Dennis D. T., Inglesby T. V, Henderson D. A., Bartlett J. G., Ascher M. S., Eitzen E., Fine A. D., Friedlander A. M., Hauer J. et al. 2001; Tularemia as a biological weapon: medical and public health management. JAMA285:2763–2773[PubMed]
    [Google Scholar]
  12. Drummond A. J., Suchard M. A., Xie D., Rambaut A.. 2012; Bayesian phylogenetics with BEAUti and the beast 1.7. Mol Biol Evol29:1969–1973 [CrossRef][PubMed]
    [Google Scholar]
  13. Duchêne S., Holt K. E., Weill F.-X., Hello S. L., Hawkey J., Edwards D. J., Fourment M., Holmes E. C.. 2016; Genome-scale rates of evolutionary change in bacteria. Microbial Genomics2: [CrossRef]
    [Google Scholar]
  14. Ferretti M., Paci G., Porrini S., Galardi L., Bagliacca M.. 2010; Habitat use and home range traits of resident and relocated hares (Lepus europaeus, Pallas). Ital J Anim Sci9:e54 [CrossRef]
    [Google Scholar]
  15. Finlay B. J.. 2002; Global dispersal of free-living microbial eukaryote species. Science296:1061–1063 [CrossRef][PubMed]
    [Google Scholar]
  16. Fischer C., Tagand R.. 2012; Spatial behaviour and survival of translocated wild brown hares. Anim Biodivers Conserv35:189–196
    [Google Scholar]
  17. Gelman A. C.. 1961; The ecology of tularemia in May. In Studies in Disease Ecology pp.89–108 Edited by May J. M.. New York: Hafner Publishing Company Inc;
    [Google Scholar]
  18. Goethert H. K., Telford S. R. 3rd. 2009; Nonrandom distribution of vector ticks (Dermacentor variabilis) infected by Francisella tularensis. PLoS Pathog5:e1000319 [CrossRef][PubMed]
    [Google Scholar]
  19. Gutiérrez M. P., Bratos M. A., Garrote J. I, Dueñas A., Almaraz A., Alamo R., Rodríguez Marcos H., Rodríguez Recio M. J., Muñoz M. F. et al. 2003; Serologic evidence of human infection by Francisella tularensis in the population of Castilla y León (Spain) prior to 1997. FEMS Immunol Med Microbiol35:165–169 [CrossRef][PubMed]
    [Google Scholar]
  20. Gyuranecz M., Birdsell D. N., Splettstoesser W., Seibold E., Beckstrom-Sternberg S. M., Makrai L., Fodor L., Fabbi M., Vicari N. et al. 2012; Phylogeography of Francisella tularensis subsp. holarctica, Europe. Emerg Infect Dis18:290–293 [CrossRef][PubMed]
    [Google Scholar]
  21. Hedge J., Wilson D. J.. 2014; Bacterial phylogenetic reconstruction from whole genomes is robust to recombination but demographic inference is not. MBio5:e02158 [CrossRef][PubMed]
    [Google Scholar]
  22. Instituto de Salud Carlos III 1997; Brote de tularemia en Castilla y León. Boletín Epidemiológico Semanal5:249–256
    [Google Scholar]
  23. Johansson A., Farlow J., Larsson P., Dukerich M., Chambers E., Byström M., Fox J., Chu M., Forsman M. et al. 2004; Worldwide genetic relationships among Francisella tularensis isolates determined by multiple-locus variable-number tandem repeat analysis. J Bacteriol186:5808–5818 [CrossRef][PubMed]
    [Google Scholar]
  24. Johansson A., Petersen J. M.. 2010; Genotyping of Francisella tularensis, the causative agent of tularemia. J AOAC Int93:1930–1943[PubMed]
    [Google Scholar]
  25. Johansson A., Lärkeryd A., Widerström M., Mörtberg S., Myrtännäs K., Öhrman C., Birdsell D., Keim P., Wagner D. M. et al. 2014; An outbreak of respiratory tularemia caused by diverse clones of Francisella tularensis. Clin Infect Dis59:1546–1553 [CrossRef][PubMed]
    [Google Scholar]
  26. Jusatz H. J.. 1952a; [Second report on the propagation of tularemia into middle and western Europe in present time; geomedical investigations on the development in the last decade and epidemiological prognosis]. Z Hyg Infektionskr134:350–374[PubMed]
    [Google Scholar]
  27. Jusatz H. J.. 1952b; Tularemia in Europe, 1926–1951. In Welt-Suchen Atlas pp.7–16 Edited by Rodenwaldt E.. Hamburg: Falk-Verlag;
    [Google Scholar]
  28. Jusatz H. J.. 1955; [Incidence of tularemia in Mainfranken 1949–53; a geomedical analysis]. Arch Hyg Bakteriol139:189–199[PubMed]
    [Google Scholar]
  29. Jusatz H. J.. 1961; The geographical distribution of tularemia throughout the world, 1911–1959. In Welt-Suchen Atlas pp.7–12 Edited by Rodenwaldt E.. Hamburg: Falk-Verlag;
    [Google Scholar]
  30. Kozarewa I., Turner D. J.. 2011; 96-plex molecular barcoding for the Illumina Genome Analyzer. Methods Mol Biol733:279–298 [CrossRef][PubMed]
    [Google Scholar]
  31. Kryazhimskiy S., Plotkin J. B.. 2008; The population genetics of dN/dS. PLoS Genet4:e1000304 [CrossRef][PubMed]
    [Google Scholar]
  32. Larsson P., Elfsmark D., Svensson K., Wikström P., Forsman M., Brettin T., Keim P., Johansson A.. 2009; Molecular evolutionary consequences of niche restriction in Francisella tularensis, a facultative intracellular pathogen. PLoS Pathog5:e1000472 [CrossRef][PubMed]
    [Google Scholar]
  33. Librado P., Rozas J.. 2009; DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics25:1451–1452 [CrossRef][PubMed]
    [Google Scholar]
  34. Lopes de Carvalho I., Zé-Zé L., Alves A. S., Pardal S., Lopes R. J., Mendes L., Núncio M. S.. 2012; Borrelia garinii and Francisella tularensis subsp. holarctica detected in migratory shorebirds in Portugal. Eur J Wildl Res58:857–861 [CrossRef]
    [Google Scholar]
  35. Low-Décarie E., Kolber M., Homme P., Lofano A., Dumbrell A., Gonzalez A., Bell G.. 2015; Community rescue in experimental metacommunities. Proc Natl Acad Sci U S A112:14307–14312 [CrossRef][PubMed]
    [Google Scholar]
  36. Moran N. A., McCutcheon J. P., Nakabachi A.. 2008; Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet42:165–190 [CrossRef][PubMed]
    [Google Scholar]
  37. Nemergut D. R., Schmidt S. K., Fukami T., O'Neill S. P., Bilinski T. M., Stanish L. F., Knelman J. E., Darcy J. L., Lynch R. C. et al. 2013; Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev77:342–356 [CrossRef][PubMed]
    [Google Scholar]
  38. Nguyen T. M., Ilef D., Jarraud S., Rouil L., Campese C., Che D., Haeghebaert S., Ganiayre F., Marcel F. et al. 2006; A community-wide outbreak of legionnaires disease linked to industrial cooling towers-how far can contaminated aerosols spread?. J Infect Dis193:102–111 [CrossRef][PubMed]
    [Google Scholar]
  39. Pavlovsky E. N.. 1966; Natural nidality of transmissible diseases Urbana Illinois: University of Illinois Press;
    [Google Scholar]
  40. Pearson T., Busch J. D., Ravel J., Read T. D., Rhoton S. D., U'Ren J. M., Simonson T. S., Kachur S. M., Leadem R. R. et al. 2004; Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing. Proc Natl Acad Sci U S A101:13536–13541 [CrossRef][PubMed]
    [Google Scholar]
  41. Petersen J. M., Schriefer M. E.. 2005; Tularemia: emergence/re-emergence. Vet Res36:455–467 [CrossRef][PubMed]
    [Google Scholar]
  42. Pigot A. L., Tobias J. A.. 2015; Dispersal and the transition to sympatry in vertebrates. Proc Biol Sci282:20141929 [CrossRef][PubMed]
    [Google Scholar]
  43. Pilo P., Johansson A., Frey J.. 2009; Identification of Francisella tularensis cluster in central and western Europe. Emerg Infect Dis15:2049–2051 [CrossRef][PubMed]
    [Google Scholar]
  44. Ramette A., Tiedje J. M.. 2007; Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proc Natl Acad Sci U S A104:2761–2766 [CrossRef][PubMed]
    [Google Scholar]
  45. Rinaldi A., Cervio C., Frittoli M., Mandelli G.. 1964; Descrizione di un focolaio di tularemia in Italia (nota preliminare). [Description of an outbreak of tularaemia (preliminary note)]. Sel. Vet5:353–363
    [Google Scholar]
  46. Rocha E. P., Smith J. M., Hurst L. D., Holden M. T., Cooper J. E., Smith N. H., Feil E. J.. 2006; Comparisons of dN/dS are time dependent for closely related bacterial genomes. J Theor Biol239:226–235 [CrossRef][PubMed]
    [Google Scholar]
  47. Romanova L. V, Mishan'kin B. N., Pichurina N. L., Vodop'ianov S. O., Saiamov S. R.. 2000; [Noncultivatable forms of Francisella tularensis]. Zh Mikrobiol Epidemiol Immunobiol11–15[PubMed]
    [Google Scholar]
  48. Simpson J. T., Wong K., Jackman S. D., Schein J. E., Jones S. J., Birol I.. 2009; ABySS: a parallel assembler for short read sequence data. Genome Res19:1117–1123 [CrossRef][PubMed]
    [Google Scholar]
  49. Smith A. T., Johnston C. H.. 2008; Lepus europaeus 2008. Available online:www.iucnredlist.org [Accessed date on 20 November 2016]
  50. Smith D. J., Timonen H. J., Jaffe D. A., Griffin D. W., Birmele M. N., Perry K. D., Ward P. D., Roberts M. S.. 2013; Intercontinental dispersal of bacteria and archaea by transpacific winds. Appl Environ Microbiol79:1134–1139 [CrossRef][PubMed]
    [Google Scholar]
  51. Svensson K., Bäck E., Eliasson H., Berglund L., Granberg M., Karlsson L., Larsson P., Forsman M., Johansson A.. 2009a; Landscape epidemiology of tularemia outbreaks in Sweden. Emerg Infect Dis15:1937–1947 [CrossRef][PubMed]
    [Google Scholar]
  52. Svensson K., Granberg M., Karlsson L., Neubauerova V., Forsman M., Johansson A.. 2009b; A real-time PCR array for hierarchical identification of Francisella isolates. PLoS One4:e8360 [CrossRef][PubMed]
    [Google Scholar]
  53. Syrjälä H., Kujala P., Myllylä V., Salminen A.. 1985; Airborne transmission of tularemia in farmers. Scand J Infect Dis17:371–375[PubMed]
    [Google Scholar]
  54. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  55. Vavrek M. J.. 2011; Fossil: Palaeoecological and palaeogeographical analysis tools. Palaeontologia Electronica14:1-16http://palaeo-electronica.org/2011_1/238/index.html
    [Google Scholar]
  56. Vellend M., Lajoie G., Bourret A., Múrria C., Kembel S. W., Garant D.. 2014; Drawing ecological inferences from coincident patterns of population- and community-level biodiversity. Mol Ecol23:2890–2901 [CrossRef][PubMed]
    [Google Scholar]
  57. Vogler A. J., Birdsell D., Price L. B., Bowers J. R., Beckstrom-Sternberg S. M., Auerbach R. K., Beckstrom-Sternberg J. S., Johansson A., Clare A. et al. 2009; Phylogeography of Francisella tularensis: global expansion of a highly fit clone. J Bacteriol191:2474–2484 [CrossRef][PubMed]
    [Google Scholar]
  58. Wang X., Van Nostrand J. D., Deng Y., Lu X., Wang C., Zhou J., Han X.. 2015; Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China's grasslands. FEMS Microbiol Ecol91:fiv133 [CrossRef]
    [Google Scholar]
  59. Wolf J. B., Künstner A., Nam K., Jakobsson M., Ellegren H.. 2009; Nonlinear dynamics of nonsynonymous (dN) and synonymous (dS) substitution rates affects inference of selection. Genome Biol Evol1:308–319 [CrossRef][PubMed]
    [Google Scholar]
  60. Antwerpen, M. H., Schacht, E., Kaysser, P. & Splettstoesser, W. D. Complete Genome Sequence of a Francisella tularensis subsp. holarctica Strain from Germany Causing Lethal Infection in Common Marmosets. Genome Announc, 1. GenBank Accession #: PRJNA175244 2013
  61. Atkins, L. M., Holder, M. E., Ajami, N. J., Metcalf, G. A., Weissenberger, G. M., Wang, M., Vee, V., Han, Y., Muzny, D. M., Gibbs, R. A. & other authors. High-Quality Draft Genome Sequence of Francisella tularensis subsp. holarctica Strain OR96-0246. Genome Announc. 3. GenBank Accession #: PRJNA30669 2015
  62. Barabote, R. D., Xie, G., Brettin, T. S., Hinrichs, S. H., Fey, P. D., Jay, J. J., Engle, J. L., Godbole, S. D., Noronha, J. M., Scheuermann, R. H. & other authors. Complete genome sequence of Francisella tularensis subspecies holarctica FTNF002-00. PLoS One, 4, e7041. GenBank Accession #: PRJNA20197 2009
  63. Baylor College of Medicine (BCM), USA. GenBank Accession #s: PRJNA30633 & PRJNA30635 2008
  64. Coolen, J. P., Sjödin, A., Maraha, B., Hajer, G. F., Forsman, M., Verspui, E., Frenay, H. M., Notermans, D. W., de Vries, M. C., Reubsaet, F. A. & other authors. Draft genome sequence of Francisella tularensis subsp. holarctica BD11-00177. Stand Genomic Sci, 8, 539-47. GenBank Accession #: PRJNA177784 2013
  65. Johansson, A., Lärkeryd, A., Widerström, M., Mörtberg, S., Myrtennäs, K., Öhrman, C., Birdsell, D., Keim, P., Wagner, D. M., Forsman, M. & other authors. An outbreak of respiratory tularemia caused by diverse clones of Francisella tularensis. Clin Infect Dis, 59, 1546-53. EMBL Nucleotide Sequence Database (ENA) Accession #s: ERS353713 & ERS353729 2014
  66. Karlsson, E., Svensson, K., Lindgren, P., Byström, M., Sjödin, A., Forsman, M. & Johansson, A. The phylogeographic pattern of Francisella tularensis in Sweden indicates a Scandinavian origin of Eurosiberian tularaemia. Environmental Microbiology, 15, 634-645. GenBank Accession #: PRJNA89145 2013
  67. La Scola, B., Elkarkouri, K., Li, W., Wahab, T., Fournous, G., Rolain, J. M., Biswas, S., Drancourt, M., Robert, C., Audic, S. & other authors. Rapid comparative genomic analysis for clinical microbiology: the Francisella tularensis paradigm. Genome Res, 18, 742-50. GenBank Accession #: PRJNA19645 2008
  68. Petrosino, J. F., Xiang, Q., Karpathy, S. E., Jiang, H., Yerrapragada, S., Liu, Y., Gioia, J., Hemphill, L., Gonzalez, A., Raghavan, T. M. & other authors. Chromosome rearrangement and diversification of Francisella tularensis revealed by the type B (OSU18) genome sequence. J Bacteriol, 188, 6977-85. GenBank Accession #: PRJNA17265 2006
  69. Sjödin, A., Svensson, K., Öhrman, C., Ahlinder, J., Lindgren, P., Duodu, S., Johansson, A., Colquhoun, D. J., Larsson, P. & Forsman, M. Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish. BMC Genomics, 13, 268. GenBank Accession #: PRJNA73369 2012
  70. Svensson, K., Sjödin, A., Byström, M., Granberg, M., Brittnacher, M. J., Rohmer, L., Jacobs, M. A., Sims-Day, E. H., Levy, R., Zhou, Y. & other authors. Genome sequence of Francisella tularensis subspecies holarctica strain FSC200, isolated from a child with tularemia. J Bacteriol, 194, 6965-6. GenBank Accession #: PRJNA16087 2012
  71. Swedish Defence Research Agency (FOI), Sweden. GenBank Accession #s: PRJNA285145 & PRJNA355394 2016
  72. Wittwer, M. Spiez laboratory, Switzerland. GenBank Accession #: PRJNA286987 2016
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000100
Loading
/content/journal/mgen/10.1099/mgen.0.000100
Loading

Data & Media loading...

Supplements

Supplementary File 1

WORD

Supplementary File 2

WORD

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error