1887

Abstract

It has become increasingly clear that the composition of mammalian gut microbial communities is substantially diet driven. These microbiota form intricate mutualisms with their hosts, which have profound implications on overall health. For example, many gut microbes are involved in the conversion of host-ingested dietary polysaccharides into host-usable nutrients. One group of important gut microbial symbionts are bacteria in the genus Ruminococcus. Originally isolated from the bovine rumen, ruminococci have been found in numerous mammalian hosts, including other ruminants, and non-ruminants such as horses, pigs and humans. All ruminococci require fermentable carbohydrates for growth, and their substrate preferences appear to be based on the diet of their particular host. Most ruminococci that have been studied are those capable of degrading cellulose, much less is known about non-cellulolytic non-ruminant-associated species, and even less is known about the environmental distribution of ruminococci as a whole. Here, we capitalized on the wealth of publicly available 16S rRNA gene sequences, genomes and large-scale microbiota studies to both resolve the phylogenetic placement of described species in the genus Ruminococcus, and further demonstrate that this genus has largely unexplored diversity and a staggering host distribution. We present evidence that ruminococci are predominantly associated with herbivores and omnivores, and our data supports the hypothesis that very few ruminococci are found consistently in non-host-associated environments. This study not only helps to resolve the phylogeny of this important genus, but also provides a framework for understanding its distribution in natural systems.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000099
2016-12-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/12/mgen000099.html?itemId=/content/journal/mgen/10.1099/mgen.0.000099&mimeType=html&fmt=ahah

References

  1. Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T. L.. 2009; blast+: architecture and applications. BMC Bioinformatics10:421 [CrossRef][PubMed]
    [Google Scholar]
  2. Chassard C., Delmas E., Robert C., Lawson P. A., Bernalier-Donadille A.. 2012; Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. Int J Syst Evol Microbiol62:138–143 [CrossRef][PubMed]
    [Google Scholar]
  3. Chen J., Stevenson D. M., Weimer P. J.. 2004; Albusin B, a bacteriocin from the ruminal bacterium Ruminococcus albus 7 that inhibits growth of Ruminococcus flavefaciens. Appl Environ Microbiol70:3167–3170 [CrossRef][PubMed]
    [Google Scholar]
  4. Christopherson M. R., Dawson J. A., Stevenson D. M., Cunningham A. C., Bramhacharya S., Weimer P. J., Kendziorski C., Suen G.. 2014; Unique aspects of fiber degradation by the ruminal ethanologen Ruminococcus albus 7 revealed by physiological and transcriptomic analysis. BMC Genomics15:1066 [CrossRef][PubMed]
    [Google Scholar]
  5. Cornick N., Stanton T.. 2009; Genus I. Lachnospira. In Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 3 pp921–922 Dordrecht, Heidelberg, London and New York: Springer;
    [Google Scholar]
  6. Dassa B., Borovok I., Ruimy-Israeli V., Lamed R., Flint H. J., Duncan S. H., Henrissat B., Coutinho P., Morrison M. et al. 2014; Rumen cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strains. PLoS One9:e99221 [CrossRef][PubMed]
    [Google Scholar]
  7. Eren A. M., Sogin M. L., Morrison H. G., Vineis J. H., Fisher J. C., Newton R. J., McLellan S. L.. 2015; A single genus in the gut microbiome reflects host preference and specificity. ISME J9:90–100 [CrossRef][PubMed]
    [Google Scholar]
  8. Ezer A., Matalon E., Jindou S., Borovok I., Atamna N., Yu Z., Morrison M., Bayer E. A., Lamed R.. 2008; Cell surface enzyme attachment is mediated by family 37 carbohydrate-binding modules, unique to Ruminococcus albus. J Bacteriol190:8220–8222 [CrossRef][PubMed]
    [Google Scholar]
  9. Flint H. J., Bayer E. A., Rincon M. T., Lamed R., White B. A.. 2008; Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol6:121–131 [CrossRef][PubMed]
    [Google Scholar]
  10. Henz S. R., Huson D. H., Auch A. F., Nieselt-Struwe K., Schuster S. C.. 2005; Whole-genome prokaryotic phylogeny. Bioinformatics21:2329–2335 [CrossRef][PubMed]
    [Google Scholar]
  11. Huelsenbeck J. P., Ronquist F.. 2001; MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics17:754–755 [CrossRef][PubMed]
    [Google Scholar]
  12. Hungate R. E.. 1957; Microorganisms in the rumen of cattle fed a constant ration. Can J Microbiol3:289–311 [CrossRef][PubMed]
    [Google Scholar]
  13. Hyatt D., Chen G. L., Locascio P. F., Land M. L., Larimer F. W., Hauser L. J.. 2010; Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics11:119 [CrossRef][PubMed]
    [Google Scholar]
  14. Jindou S., Brulc J. M., Levy-Assaraf M., Rincon M. T., Flint H. J., Berg M. E., Wilson M. K., White B. A., Bayer E. A. et al. 2008; Cellulosome gene cluster analysis for gauging the diversity of the ruminal cellulolytic bacterium Ruminococcus flavefaciens. FEMS Microbiol Lett285:188–194 [CrossRef][PubMed]
    [Google Scholar]
  15. Julliand V., de Vaux A., Millet L., Fonty G.. 1999; Identification of Ruminococcus flavefaciens as the predominant cellulolytic bacterial species of the equine cecum. Appl Environ Microbiol65:3738–3741[PubMed]
    [Google Scholar]
  16. Katoh K., Standley D. M.. 2013; MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol30:772–780 [CrossRef][PubMed]
    [Google Scholar]
  17. Katoh K., Misawa K., Kuma K., Miyata T.. 2002; MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res30:3059–3066 [CrossRef][PubMed]
    [Google Scholar]
  18. Kembel S. W., O'Connor T. K., Arnold H. K., Hubbell S. P., Wright S. J., Green J. L.. 2014; Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci U S A111:13715–13720 [CrossRef][PubMed]
    [Google Scholar]
  19. Kopecný J., Hodrová B., Stewart C.. 1996; The effect of rumen chitinolytic bacteria on cellulolytic anaerobic fungi. Lett Appl Microbiol3:199–202
    [Google Scholar]
  20. Krause D. O., Dalrymple B. P., Smith W. J., Mackie R. I., McSweeney C. S.. 1999; 16S rDNA sequencing of Ruminococcus albus and Ruminococcus flavefaciens: design of a signature probe and its application in adult sheep. Microbiology145:1797–1807 [CrossRef][PubMed]
    [Google Scholar]
  21. Lagkouvardos I., Pukall R., Abt B., Foesel B. U., Meier-Kolthoff J. P., Kumar N., Bresciani A., Martínez I., Just S. et al. 2016; The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol1:16131 [CrossRef][PubMed]
    [Google Scholar]
  22. Lawson P. A., Finegold S. M.. 2015; Reclassification of Ruminococcus obeum as Blautia obeum comb. nov. Int J Syst Evol Microbiol65:789–793 [CrossRef][PubMed]
    [Google Scholar]
  23. Lay C., Sutren M., Rochet V., Saunier K., Doré J., Rigottier-Gois L.. 2005; Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ Microbiol7:933–946 [CrossRef][PubMed]
    [Google Scholar]
  24. Lefort V., Desper R., Gascuel O.. 2015; FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol32:2798–2800 [CrossRef][PubMed]
    [Google Scholar]
  25. Leschine S. B.. 1995; Cellulose degradation in anaerobic environments. Annu Rev Microbiol49:399–426 [CrossRef][PubMed]
    [Google Scholar]
  26. Ley R. E., Hamady M., Lozupone C., Turnbaugh P. J., Ramey R. R., Bircher J. S., Schlegel M. L., Tucker T. A., Schrenzel M. D. et al. 2008a; Evolution of mammals and their gut microbes. Science320:1647–1651 [CrossRef][PubMed]
    [Google Scholar]
  27. Ley R. E., Lozupone C. A., Hamady M., Knight R., Gordon J. I.. 2008b; Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol6:776–788 [CrossRef][PubMed]
    [Google Scholar]
  28. Li M., Wang B., Zhang M., Rantalainen M., Wang S., Zhou H., Zhang Y., Shen J., Pang X. et al. 2008; Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U S A105:2117–2122 [CrossRef][PubMed]
    [Google Scholar]
  29. Liu C., Finegold S. M., Song Y., Lawson P. A.. 2008; Reclassification of Clostridiumcoccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkiias Blautia coccoidesgen. nov., comb. nov., Blautia hanseniicomb. nov., Blautia hydroge. Int J Syst Evol Microbiol58:1896–1902
    [Google Scholar]
  30. Markowitz V. M., Chen I.-M. A., Palaniappan K., Chu K., Szeto E., Grechkin Y., Ratner A., Jacob B., Huang J. et al. 2012; IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res40:D115–D122 [CrossRef][PubMed]
    [Google Scholar]
  31. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M.. 2013a; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14:60 [CrossRef][PubMed]
    [Google Scholar]
  32. Meier-Kolthoff J. P., Göker M., Spröer C., Klenk H. P.. 2013b; When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  33. Meier-Kolthoff J., Auch A. F., Klenk H. P., Göker M.. 2014; Highly parallelized inference of large genome-based phylogenies. Concurr Comput: Pract Exp26:1715–1729 [CrossRef]
    [Google Scholar]
  34. Moraïs S., Ben David Y., Bensoussan L., Duncan S. H., Koropatkin N. M., Martens E. C., Flint H. J., Bayer E. A.. 2016; Enzymatic profiling of cellulosomal enzymes from the human gut bacterium, Ruminococcus champanellensis, reveals a fine-tuned system for cohesin-dockerin recognition. Environ Microbiol18:542–556 [CrossRef][PubMed]
    [Google Scholar]
  35. Orpin C. G., Mathiesen S. D., Greenwood Y., Blix A. S.. 1985; Seasonal changes in the ruminal microflora of the high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus). Appl Environ Microbiol50:144–151[PubMed]
    [Google Scholar]
  36. Pavlostathis S. G., Miller T. L., Wolin M. J.. 1988; Kinetics of insoluble cellulose fermentation by continuous cultures of Ruminococcus albus. Appl Environ Microbiol54:2660–2663[PubMed]
    [Google Scholar]
  37. Qin J., Li R., Raes J., Arumugam M., Burgdorf K. S., Manichanh C., Nielsen T., Pons N., Levenez F. et al. 2010; A human gut microbial gene catalogue established by metagenomic sequencing. Nature464:59–65 [CrossRef][PubMed]
    [Google Scholar]
  38. Rainey F.. 2009a; Family V. Lachnospiraceae fam. nov. In Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 3 pp.921. Dordrecht, Heidelberg, London and New York:: Springer;
    [Google Scholar]
  39. Rainey F.. 2009b; Family VIII. Ruminococcaceae fam. nov. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 3 pp.1016–1043. Dordrecht, Heidelberg, London and New York:: Springer;
    [Google Scholar]
  40. Rainey F. A., Janssen P. H.. 1995; Phylogenetic analysis by 16S ribosomal DNA sequence comparison reveals two unrelated groups of species within the genus Ruminococcus. FEMS Microbiol Lett129:69–73 [CrossRef][PubMed]
    [Google Scholar]
  41. Ronquist F., Huelsenbeck J. P.. 2003; MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics19:1572–1574 [CrossRef][PubMed]
    [Google Scholar]
  42. Round J. L., Mazmanian S. K.. 2009; The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol9:313–323 [CrossRef][PubMed]
    [Google Scholar]
  43. Sanders J. G., Beichman A. C., Roman J., Scott J. J., Emerson D., McCarthy J. J., Girguis P. R.. 2015; Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores. Nat Commun6:8285–8288 [CrossRef][PubMed]
    [Google Scholar]
  44. Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., Lesniewski R. A., Oakley B. B., Parks D. H. et al. 2009; Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol75:7537–7541 [CrossRef][PubMed]
    [Google Scholar]
  45. Shi Y., Odt C. L., Weimer P. J.. 1997; Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Appl Environ Microbiol63:734–742[PubMed]
    [Google Scholar]
  46. Sijpesteijn A. K.. 1948; Cellulose-decomposing bacteria from the rumen of the cattle. PhD thesis Leiden University, The Netherlands
    [Google Scholar]
  47. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16s rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol44:846–849 [CrossRef]
    [Google Scholar]
  48. Suen G., Stevenson D. M., Bruce D. C., Chertkov O., Copeland A., Cheng J. F., Detter C., Detter J. C., Goodwin L. A. et al. 2011; Complete genome of the cellulolytic ruminal bacterium Ruminococcus albus 7. J Bacteriol193:5574–5575 [CrossRef][PubMed]
    [Google Scholar]
  49. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  50. Walker A. W., Ince J., Duncan S. H., Webster L. M., Holtrop G., Ze X., Brown D., Stares M. D., Scott P. et al. 2011; Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J5:220–230 [CrossRef][PubMed]
    [Google Scholar]
  51. Wang Q., Garrity G. M., Tiedje J. M., Cole J. R.. 2007; Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol73:5261–5267 [CrossRef][PubMed]
    [Google Scholar]
  52. Wegmann U., Louis P., Goesmann A., Henrissat B., Duncan S. H., Flint H. J.. 2014; Complete genome of a new Firmicutes species belonging to the dominant human colonic microbiota (‘Ruminococcus bicirculans') reveals two chromosomes and a selective capacity to utilize plant glucans. Environ Microbiol16:2879–2890 [CrossRef][PubMed]
    [Google Scholar]
  53. Yu Y., Li H., Zeng Y., Chen B.. 2010; Phylogenetic diversity of culturable bacteria from Antarctic sandy intertidal sediments. Polar Biol33:869–875 [CrossRef]
    [Google Scholar]
  54. Ze X., Duncan S. H., Louis P., Flint H. J.. 2012; Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J6:1535–1543 [CrossRef][PubMed]
    [Google Scholar]
  55. Ze X., Ben David Y., Laverde-Gomez J. A., Dassa B., Sheridan P. O., Duncan S. H., Louis P., Henrissat B., Juge N. et al. 2015; Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic Firmicutes bacterium Ruminococcus bromii. MBio6:e01058-15 [CrossRef][PubMed]
    [Google Scholar]
  56. Studies used in Ruminococcus distribution analysis (detailed in Table S4):
  57. Hong et al. ENA – SRA http://www.ebi.ac.uk/ena/data/view/ERX366920 2015
  58. Bennett et al. NCBI – SRA http://www.ncbi.nlm.nih.gov/sra/?term=SRA071216 2013
  59. Sergeant et al. NCBI – SRA http://www.ncbi.nlm.nih.gov/sra/SRX253206 [accn] 2014
  60. Menke et al. NCBI – SRA http://www.ncbi.nlm.nih.gov/sra/?term=SRP044660 2014
  61. Handl et al. NCBI – SRA http://www.ncbi.nlm.nih.gov/sra/?term=SRA012231 2011
  62. Delsuc et al. EMBL – EBI http://www.ebi.ac.uk/biosamples/group/SAMEG163130 2014
  63. Miyake et al. NCBI – SRA http://www.ncbi.nlm.nih.gov/sra/?term=SRP040147 2015
  64. Weldon et al. EMBL – EBI http://www.ebi.ac.uk/ena/data/view/PRJEB9715 2015
  65. Baldo et al. NCBI – SRA http://www.ncbi.nlm.nih.gov/sra/?term=SRP045780 2015
  66. Dewar et al. EMBL – EBI http://www.ebi.ac.uk/ena/data/view/PRJEB3083 2013
  67. Fierer et al. EMBL – EBI http://www.ebi.ac.uk/ena/data/view/PRJEB4334 2013
  68. Navarrete et al. EMBL – EBI http://www.ebi.ac.uk/ena/data/view/PRJEB8643 2015
  69. Llirós et al. NCBI – SRA http://www.ncbi.nlm.nih.gov/sra/?term=PRJNA241494 2014
  70. Andersson et al. NCBI – SRA http://www.ncbi.nlm.nih.gov/sra/?term=SRA009836%20 2010
  71. Cameron et al. EMBL – EBI http://www.ebi.ac.uk/ena/data/view/PRJEB4904 2014
  72. França et al. EMBL – EBI http://www.ebi.ac.uk/ena/data/view/PRJEB1538 2014
  73. McKlellan et al. NCBI – SRA http://www.ncbi.nlm.nih.gov/sra/?term=SRP000905 2010
  74. Cardinale et al. EMBL – EBI http://www.ebi.ac.uk/ena/data/view/PRJEB5101 2014
  75. Genomes used in phylogenomic analysis (detailed in Table S6):
  76. Joint Genome Institute – IMG/M database samples
  77. PATRIC database
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000099
Loading
/content/journal/mgen/10.1099/mgen.0.000099
Loading

Data & Media loading...

Supplements

Supplementary File 1

EXCEL

Supplementary File 2

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error