1887

Abstract

Yersinia ruckeri is a salmonid pathogen with widespread distribution in cool-temperate waters including Australia and New Zealand, two isolated environments with recently developed salmonid farming industries. Phylogenetic comparison of 58 isolates from Australia, New Zealand, USA, Chile, Finland and China based on non-recombinant core genome SNPs revealed multiple deep-branching lineages, with a most recent common ancestor estimated at 18 500 years BP (12 355–24 757 95% HPD) and evidence of Australasian endemism. Evolution within the Tasmanian Atlantic salmon serotype O1b lineage has been slow, with 63 SNPs describing the variance over 27 years. Isolates from the prevailing lineage are poorly/non-motile compared to a lineage pre-vaccination, introduced in 1997, which is highly motile but has not been isolated since from epizootics. A non-motile phenotype has arisen independently in Tasmania compared to Europe and USA through a frameshift in fliI, encoding the ATPase of the flagella cluster. We report for the first time lipopolysaccharide O-antigen serotype O2 isolates in Tasmania. This phenotype results from deletion of the O-antigen cluster and consequent loss of high-molecular-weight O-antigen. This phenomenon has occurred independently on three occasions on three continents (Australasia, North America and Asia) as O2 isolates from the USA, China and Tasmania share the O-antigen deletion but occupy distant lineages. Despite the European and North American origins of the Australasian salmonid stocks, the lineages of Y. ruckeri in Australia and New Zealand are distinct from those of the northern hemisphere, suggesting they are pre-existing ancient strains that have emerged and evolved with the introduction of susceptible hosts following European colonization.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000095
2016-11-30
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/11/mgen000095.html?itemId=/content/journal/mgen/10.1099/mgen.0.000095&mimeType=html&fmt=ahah

References

  1. Alikhan N. F., Petty N. K., Ben Zakour N. L., Beatson S. A.. 2011; BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics12:402 [CrossRef][PubMed]
    [Google Scholar]
  2. Amann R. I., Ludwig W., Schleifer K. H.. 1995; Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev59:143–169
    [Google Scholar]
  3. Anderson C. D., Knowles G., de Lisle G. W.. 1994; A survey for Yersinia ruckeri and Aeromonas salmonicida in farmed and wild fish. Surveillance21:39–40
    [Google Scholar]
  4. Atkinson S., Chang C. Y., Sockett R. E., Cámara M., Williams P.. 2006; Quorum sensing in Yersinia enterocolitica controls swimming and swarming motility. J Bacteriol188:1451–1461 [CrossRef][PubMed]
    [Google Scholar]
  5. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S. et al. 2012; SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  6. Barnes A. C.. 2011; Enteric Redmouth Disease (ERM) (Yersinia ruckeri). In Fish Diseases and Disorders, Vol 3: Viral, Bacterial and Fungal Infections, 2nd edn. , pp.484–511 Edited by Woo P. T. K, Bruno D. W.. Wallingford, UK: CABI International;[CrossRef]
    [Google Scholar]
  7. Barros M. P., França C. T., Lins R. H., Santos M. D., Silva E. J., Oliveira M. B., Silveira-Filho V. M., Rezende A. M., Balbino V. Q., Leal-Balbino T. C.. 2014; Dynamics of CRISPR loci in microevolutionary process of Yersinia pestis strains. PLoS One9:e108353 [CrossRef][PubMed]
    [Google Scholar]
  8. Bastardo A., Bohle H., Ravelo C., Toranzo A. E., Romalde J. L.. 2011; Serological and molecular heterogeneity among Yersinia ruckeri strains isolated from farmed Atlantic salmon Salmo salar in Chile. Dis Aquat Organ93:207–214 [CrossRef][PubMed]
    [Google Scholar]
  9. Bastardo A., Ravelo C., Romalde J. L.. 2012; Multilocus sequence typing reveals high genetic diversity and epidemic population structure for the fish pathogen Yersinia ruckeri. Environ Microbiol14:1888–1897 [CrossRef][PubMed]
    [Google Scholar]
  10. Bastardo A., Ravelo C., Romalde J. L.. 2015; Phylogeography of reveals effects of past evolutionary events on the current strain distribution and explains variations in the global transmission of enteric redmouth (ERM) disease. Front Microbiol6:1198 [CrossRef][PubMed]
    [Google Scholar]
  11. Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C. H., Xie D., Suchard M. A., Rambaut A., Drummond A. J.. 2014; beast 2: a software platform for bayesian evolutionary analysis. PLoS Comput Biol10:e1003537 [CrossRef][PubMed]
    [Google Scholar]
  12. Brynildsrud O., Feil E. J., Bohlin J., Castillo-Ramirez S., Colquhoun D., McCarthy U., Matejusova I. M., Rhodes L. D., Wiens G. D., Verner-Jeffreys D. W.. 2014; Microevolution of Renibacterium salmoninarum: evidence for intercontinental dissemination associated with fish movements. ISME J8:746–756 [CrossRef][PubMed]
    [Google Scholar]
  13. Bullock G. L., Stuckey H. M., Shotts E. B.. 1978; Early records of North American and Australian outbreaks of enteric redmouth disease. Fish Health News6:96–97
    [Google Scholar]
  14. Busch R. A.. 1978; Protective vaccines for mass immunization of trout. Salmonid1:10–22
    [Google Scholar]
  15. Carson J., Wilson T.. 2009; Yersiniosis in Fish. Australian New Zealand Standard Diagnostic Procedures Edited by Sub Committee on Aquatic Animal Health Laboratory Standards (SCAAHLS), Canberra Canberra, Australia: Commonwealth of Australia, Canberra;
    [Google Scholar]
  16. Carver T., Harris S. R., Berriman M., Parkhill J., McQuillan J. A.. 2012; Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics28:464–469 [CrossRef][PubMed]
    [Google Scholar]
  17. Chen P. E., Cook C., Stewart A. C., Nagarajan N., Sommer D. D., Pop M., Thomason B., Thomason M. P., Lentz S. et al. 2010; Genomic characterization of the Yersinia genus. Genome Biol11:R1 [CrossRef][PubMed]
    [Google Scholar]
  18. Coquet L., Cosette P., Quillet L., Petit F., Junter G. A., Jouenne T.. 2002; Occurrence and phenotypic characterization of Yersinia ruckeri strains with biofilm-forming capacity in a rainbow trout farm. Appl Environ Microbiol68:470–475 [CrossRef][PubMed]
    [Google Scholar]
  19. Craig L., Pique M. E., Tainer J. A.. 2004; Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol2:363–378 [CrossRef][PubMed]
    [Google Scholar]
  20. Croucher N. J., Page A. J., Connor T. R., Delaney A. J., Keane J. A., Bentley S. D., Parkhill J., Harris S. R.. 2015; Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res43:e15 [CrossRef][PubMed]
    [Google Scholar]
  21. Davies R. L.. 1991; Clonal analysis of Yersinia ruckeri based on biotypes, serotypes and outer membrane protein-types. J Fish Dis14:221–228 [CrossRef]
    [Google Scholar]
  22. Deshmukh S., Raida M. K., Dalsgaard I., Chettri J. K., Kania P. W., Buchmann K.. 2012; Comparative protection of two different commercial vaccines against Yersinia ruckeri serotype O1 and biotype 2 in rainbow trout (Oncorhynchus mykiss). Vet Immunol Immunopathol145:379–385 [CrossRef][PubMed]
    [Google Scholar]
  23. Forde B. M., Ben Zakour N. L., Stanton-Cook M., Phan M. D., Totsika M., Peters K. M., Chan K. G., Schembri M. A., Upton M., Beatson S. A.. 2014; The complete genome sequence of Escherichia coli EC958: a high quality reference sequence for the globally disseminated multidrug resistant E. coli O25b:H4-ST131 clone. PLoS One9:e104400 [CrossRef][PubMed]
    [Google Scholar]
  24. Fouz B., Zarza C., Amaro C.. 2006; First description of non-motile Yersinia ruckeri serovar I strains causing disease in rainbow trout, Oncorhynchus mykiss (Walbaum), cultured in Spain. J Fish Dis29:339–346 [CrossRef][PubMed]
    [Google Scholar]
  25. Furones M. D., Gilpin M. L., Munn C. B.. 1993; Culture media for the differentiation of isolates of Yersinia ruckeri, based on detection of a virulence factor. J Appl Bacteriol74:360–366 [CrossRef][PubMed]
    [Google Scholar]
  26. Gilmour D.. 1996; Trout Fishery of Tasmania Volume One 1865-1910. Launceston, Tasmania, Australia: Don Gilmour, 261 Penquite Road, Launceston, Tasmania 7250, Australia.
  27. Glenn R. A., Taylor P. W., Pelton E. H., Gutenberger S. K., Ahrens M. A., Marchant L. M., Hanson K. C.. 2015; Genetic Evidence of Vertical Transmission and Cycling of Yersinia ruckeri in Hatchery-Origin Fall Chinook Salmon Oncorhynchus tshawytscha. J Fish Wildl Manag6:44–54 [CrossRef]
    [Google Scholar]
  28. Haiko J., Westerlund-Wikström B.. 2013; The role of the bacterial flagellum in adhesion and virulence. Biology2:1242–1267 [CrossRef][PubMed]
    [Google Scholar]
  29. Haworth J.. 2010; Swimming Upstream: How Salmon Farming Developed in New Zealand, 1st edn. Christchurch, New Zealand: Wily Publications;
    [Google Scholar]
  30. Ispir U., Dorucu M.. 2014; Efficacy of lipopolysaccharide antigen of Yersinia ruckeri in rainbow trout by intraperitoneal and bath immersion administration. Res Vet Sci97:271–273 [CrossRef][PubMed]
    [Google Scholar]
  31. Jungalwalla P.. 1991; The development of an integrated saltwater salmonid farming industry in Tasmania, Australia. In World Aquaculture World Aquaculture Society , pp.65–73 Edited by Cook R. H., Pennell W.. Los Angeles, USA: World Aquaculture Society;
    [Google Scholar]
  32. Kahn S. A., Beers P. T., Findlay V. L., Peebles I. R., Durham P. J., Wilson D. W., Gerrity S. E.. 1999; Import Risk Analysis on Non-Viable Salmonids and Non-Salmonid Marine Fish Edited by Service A. Q. I.. Canberra, Australia: Australian Govenment;
    [Google Scholar]
  33. Koskela K. A., Mattinen L., Kalin-Mänttäri L., Vergnaud G., Gorgé O., Nikkari S., Skurnik M.. 2015; Generation of a CRISPR database for Yersinia pseudotuberculosis complex and role of CRISPR-based immunity in conjugation. Environ Microbiol17:4306–4321 [CrossRef][PubMed]
    [Google Scholar]
  34. Leaché A. D., Banbury B. L., Felsenstein J., de Oca A. N., Stamatakis A.. 2015; Short Tree, Long Tree, Right Tree, Wrong Tree: new acquisition bias corrections for Inferring SNP phylogenies. Syst Biol64:1032–1047 [CrossRef][PubMed]
    [Google Scholar]
  35. Leskinen K., Blasdel B. G., Lavigne R., Skurnik M.. 2016; RNA-Sequencing Reveals the Progression of Phage-Host Interactions between phiR1-37 and Yersinia enterocolitica. Viruses8:111 [CrossRef][PubMed]
    [Google Scholar]
  36. Marraffini L. A.. 2013; CRISPR-Cas immunity against phages: its effects on the evolution and survival of bacterial pathogens. PLoS Pathog9:e1003765 [CrossRef][PubMed]
    [Google Scholar]
  37. McDowall R. M.. 1994; The origins of New Zealand's Chinook Salmon, Oncorhynchus tshawytscha. Mar Fish Rev56:1–7
    [Google Scholar]
  38. Milne I., Bayer M., Cardle L., Shaw P., Stephen G., Wright F., Marshall D.. 2010; Tablet – next generation sequence assembly visualization. Bioinformatics26:401–402 [CrossRef][PubMed]
    [Google Scholar]
  39. Milne I., Stephen G., Bayer M., Cock P. J., Pritchard L., Cardle L., Shaw P. D., Marshall D.. 2013; Using tablet for visual exploration of second-generation sequencing data. Brief Bioinform14:193–202 [CrossRef][PubMed]
    [Google Scholar]
  40. Minnich S. A., Rohde H. N.. 2007; A rationale for repression and/or loss of motility by pathogenic Yersinia in the mammalian host. Adv Exp Med Biol603:298–310 [CrossRef][PubMed]
    [Google Scholar]
  41. Navas E., Bohle H., Henríquez P., Grothusen H., Bustamante F., Bustos P., Mancilla M.. 2014; Draft Genome Sequence of the Fish Pathogen Yersinia ruckeri Strain 37551, Serotype O1b, Isolated from Diseased, Vaccinated Atlantic Salmon (Salmo salar) in Chile. Genome Announc2:e00858-14 [CrossRef][PubMed]
    [Google Scholar]
  42. Nelson M. C., LaPatra S. E., Welch T. J., Graf J.. 2015; Complete Genome Sequence of Yersinia ruckeri Strain CSF007-82, Etiologic Agent of Red Mouth Disease in Salmonid Fish. Genome Announc3:e0149101414 [CrossRef][PubMed]
    [Google Scholar]
  43. Page A. J., Cummins C. A., Hunt M., Wong V. K., Reuter S., Holden M. T., Fookes M., Falush D., Keane J. A., Parkhill J.. 2015; Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics31:3691–3693 [CrossRef][PubMed]
    [Google Scholar]
  44. Petkau A., Stuart-Edwards M., Stothard P., Van Domselaar G.. 2010; Interactive microbial genome visualization with GView. Bioinformatics26:3125–3126 [CrossRef][PubMed]
    [Google Scholar]
  45. Rambaut A., Lam T. T., Max Carvalho L., Pybus O. G.. 2016; Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol2:1 [CrossRef]
    [Google Scholar]
  46. Reuter S., Connor T. R., Barquist L., Walker D., Feltwell T., Harris S. R., Fookes M., Hall M. E., Petty N. K. et al. 2014; Parallel independent evolution of pathogenicity within the genus Yersinia. Proc Natl Acad Sci U S A111:6768–6773 [CrossRef][PubMed]
    [Google Scholar]
  47. Rissman A. I., Mau B., Biehl B. S., Darling A. E., Glasner J. D., Perna N. T.. 2009; Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics25:2071–2073 [CrossRef][PubMed]
    [Google Scholar]
  48. Romalde J. L., MagariÑos B., Barja J. L., Toranzo A. E.. 1993; Antigenic and molecular characterization of yersinia ruckeri proposal for a new intraspecies classification. Syst Appl Microbiol16:411–419 [CrossRef]
    [Google Scholar]
  49. Rosinski-Chupin I., Sauvage E., Mairey B., Mangenot S., Ma L., Da Cunha V., Rusniok C., Bouchier C., Barbe V., Glaser P.. 2013; Reductive evolution in Streptococcus agalactiae and the emergence of a host adapted lineage. BMC Genomics14:252 [CrossRef][PubMed]
    [Google Scholar]
  50. Sauter R. W., Williams C., Celnik B., Meyer E. A.. 1985; Etiology of Early Lifestage Diseases, Final Report 1985, Report to Bonneville Power Administration, Contract No. 1984BI18186, Project 198404400, 53 Electronic Pages (BPA Report DOE/BP-18186-1)
    [Google Scholar]
  51. Schroll C., Barken K. B., Krogfelt K. A., Struve C.. 2010; Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol10:179 [CrossRef][PubMed]
    [Google Scholar]
  52. Scott D. S., Hewitson J., Fraser J. S.. 1978; The origin of rainbow trout, Salmo gairdneri Richardson, in New Zealand. Calif Fish Game64:200–209
    [Google Scholar]
  53. Seemann T.. 2014; Prokka: rapid prokaryotic genome annotation. Bioinformatics30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  54. Stamatakis A.. 2014; RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  55. Sullivan M. J., Ben Zakour N. L., Forde B. M., Stanton-Cook M., Beatson S. A.. 2016; Contiguity: contig adjacency graph construction and visualisation Available. https://github.com/BeatsonLab-MicrobialGenomics/Contiguity’ August 2016
  56. Tebbit G. L., Erickson J. D., Vande Water R. B.. 1981; Development and use of Yersinia ruckeri bacterins to control enteric redmouth disease. In International Symposium on Fish Biologics: Serodiagnostics and Fish Vaccines , pp.395–402 Edited by Hennessen W, Anderson D. P.. Basel: Karger;
    [Google Scholar]
  57. Tinsley J. W., Austin D. A., Lyndon A. R., Austin B.. 2011a; Novel non-motile phenotypes of Yersinia ruckeri suggest expansion of the current clonal complex theory. J Fish Dis34:311–317 [CrossRef]
    [Google Scholar]
  58. Tinsley J. W., Lyndon A. R., Austin B.. 2011b; Antigenic and cross-protection studies of biotype 1 and biotype 2 isolates of Yersinia ruckeri in rainbow trout, Oncorhynchus mykiss (Walbaum). J Appl Microbiol111:8–16 [CrossRef]
    [Google Scholar]
  59. Toledo M. S., Troncoso M., Portell D. P., Figueroa G.. 1993; Brote causado por Yersinia ruckeri en salmonidos en cultivo. Annals of Microbiology1:59–62
    [Google Scholar]
  60. Treangen T. J., Ondov B. D., Koren S., Phillippy A. M.. 2014; The harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol15:524 [CrossRef][PubMed]
    [Google Scholar]
  61. Tsai C. M., Frasch C. E.. 1982; A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem119:115–119 [CrossRef][PubMed]
    [Google Scholar]
  62. Walker J.. 1988; Origins of the Tasmanian trout. An account of the Salmon Ponds and the first introduction of salmon and trout to Tasmania in 1864. Hobart, Tasmania, Australia: Inland Fisheries Commission, Tasmania, Australia.
  63. Wangkahart E., Scott C., Secombes C. J., Wang T.. 2016; Re-examination of the rainbow trout (Oncorhynchus mykiss) immune response to flagellin: Yersinia ruckeri flagellin is a potent activator of acute phase proteins, anti-microbial peptides and pro-inflammatory cytokines in vitro. Dev Comp Immunol57:75–87 [CrossRef][PubMed]
    [Google Scholar]
  64. Welch T. J., Verner-Jeffreys D. W., Dalsgaard I., Wiklund T., Evenhuis J. P., Cabrera J. A., Hinshaw J. M., Drennan J. D., LaPatra S. E.. 2011; Independent emergence of Yersinia ruckeri biotype 2 in the United States and Europe. Appl Environ Microbiol77:3493–3499 [CrossRef][PubMed]
    [Google Scholar]
  65. Welch T. J., LaPatra S.. 2016; Yersinia ruckeri lipopolysaccharide is necessary and sufficient for eliciting a protective immune response in rainbow trout (Oncorhynchus mykiss, Walbaum). Fish Shellfish Immunol49:420–426 [CrossRef][PubMed]
    [Google Scholar]
  66. Wheeler R. W., Davies R. L., Dalsgaard I., Garcia J., Welch T. J., Wagley S., Bateman K. S., Verner-Jeffreys D. W.. 2009; Yersinia ruckeri biotype 2 isolates from mainland Europe and the UK likely represent different clonal groups. Dis Aquat Organ84:25–33 [CrossRef][PubMed]
    [Google Scholar]
  67. Wilksch J. J., Yang J., Clements A., Gabbe J. L., Short K. R., Cao H., Cavaliere R., James C. E., Whitchurch C. B. et al. 2011; MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLoS Pathog7:e1002204 [CrossRef][PubMed]
    [Google Scholar]
  68. Willumsen B.. 1989; Birds and wild fish as potential vectors of Yersinia ruckeri. J Fish Dis12:275–277 [CrossRef]
    [Google Scholar]
  69. Yi E. C., Hackett M.. 2000; Rapid isolation method for lipopolysaccharide and lipid A from gram-negative bacteria. Analyst125:651–656 [CrossRef][PubMed]
    [Google Scholar]
  70. Yim L., Sasias S., Martinez A., Betancor L., Estevez V., Scavone P., Bielli A., Sirok A., Chabalgoity J. A.. 2014; Repression of flagella is a common trait in field isolates of Salmonella enterica serovar Dublin and is associated with invasive human infections. nfect Immun82:1465–1476 [CrossRef]
    [Google Scholar]
  71. Zhou Y., Liang Y., Lynch K. H., Dennis J. J., Wishart D. S.. 2011; PHAST: a fast phage search tool. Nucleic Acids Res39:W347–352 [CrossRef][PubMed]
    [Google Scholar]
  72. Barnes, AC (2016) Yersinia ruckeri Genome sequencing and assemblyhttp://www.ncbi.nlm.nih.gov/bioproject/PRJNA310959
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000095
Loading
/content/journal/mgen/10.1099/mgen.0.000095
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error