1887

Abstract

Estimating the rates at which bacterial genomes evolve is critical to understanding major evolutionary and ecological processes such as disease emergence, long-term host–pathogen associations and short-term transmission patterns. The surge in bacterial genomic data sets provides a new opportunity to estimate these rates and reveal the factors that shape bacterial evolutionary dynamics. For many organisms estimates of evolutionary rate display an inverse association with the time-scale over which the data are sampled. However, this relationship remains unexplored in bacteria due to the difficulty in estimating genome-wide evolutionary rates, which are impacted by the extent of temporal structure in the data and the prevalence of recombination. We collected 36 whole genome sequence data sets from 16 species of bacterial pathogens to systematically estimate and compare their evolutionary rates and assess the extent of temporal structure in the absence of recombination. The majority (28/36) of data sets possessed sufficient clock-like structure to robustly estimate evolutionary rates. However, in some species reliable estimates were not possible even with ‘ancient DNA’ data sampled over many centuries, suggesting that they evolve very slowly or that they display extensive rate variation among lineages. The robustly estimated evolutionary rates spanned several orders of magnitude, from approximately 10 to 10 nucleotide substitutions per site year. This variation was negatively associated with sampling time, with this relationship best described by an exponential decay curve. To avoid potential estimation biases, such time-dependency should be considered when inferring evolutionary time-scales in bacteria.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000094
2016-11-30
2019-08-25
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/11/mgen000094.html?itemId=/content/journal/mgen/10.1099/mgen.0.000094&mimeType=html&fmt=ahah

References

  1. Baines S. L., Holt K. E., Schultz M. B., Seemann T., Howden B. O., Jensen S. O., van Hal S. J., Coombs G. W., Firth N. et al. 2015; Convergent adaptation in the dominant global hospital clone ST239 of methicillin-resistant Staphylococcus aureus. MBio6:e00080-15 [CrossRef][PubMed]
    [Google Scholar]
  2. Bart M. J., Harris S. R., Advani A., Arakawa Y., Bottero D., Bouchez V., Cassiday P. K., Chiang C. S., Dalby T. et al. 2014; Global population structure and evolution of Bordetella pertussis and their relationship with vaccination. MBio5:e01074-14 [CrossRef][PubMed]
    [Google Scholar]
  3. Biek R., Pybus O. G., Lloyd-Smith J. O., Didelot X.. 2015; Measurably evolving pathogens in the genomic era. Trends Ecol Evol30:306–313 [CrossRef][PubMed]
    [Google Scholar]
  4. Boni M. F., Posada D., Feldman M. W.. 2007; An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics176:1035–1047 [CrossRef][PubMed]
    [Google Scholar]
  5. Bos K. I., Harkins K. M., Herbig A., Coscolla M., Weber N., Comas I., Forrest S. A., Bryant J. M., Harris S. R. et al. 2014; Pre-Columbian mycobacterial genomes reveal seals as a source of new world human tuberculosis. Nature514:494–497 [CrossRef][PubMed]
    [Google Scholar]
  6. Bos K. I., Herbig A., Sahl J., Waglechner N., Fourment M., Forrest S. A., Klunk J., Schuenemann V. J., Poinar D. et al. 2016; Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus. Elife5:e12994 [CrossRef][PubMed]
    [Google Scholar]
  7. Bratcher H. B., Corton C., Jolley K. A., Parkhill J., Maiden M. C.. 2014; A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes. BMC Genomics15:1138 [CrossRef][PubMed]
    [Google Scholar]
  8. Bromham L.. 2009; Why do species vary in their rate of molecular evolution?. Biol Lett5:401–404 [CrossRef][PubMed]
    [Google Scholar]
  9. Comas I., Coscolla M., Luo T., Borrell S., Holt K. E., Kato-Maeda M., Parkhill J., Malla B., Berg S. et al. 2013; Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet45:1176–1182 [CrossRef][PubMed]
    [Google Scholar]
  10. Croucher N. J., Harris S. R., Fraser C., Quail M. A., Burton J., van der Linden M., McGee L., von Gottberg A., Song J. H. et al. 2011; Rapid pneumococcal evolution in response to clinical interventions. Science331:430–434 [CrossRef][PubMed]
    [Google Scholar]
  11. Croucher N. J., Page A. J., Connor T. R., Delaney A. J., Keane J. A., Bentley S. D., Parkhill J., Harris S. R.. 2014; Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res43:e15 [CrossRef][PubMed]
    [Google Scholar]
  12. Cui Y., Yu C., Yan Y., Li D., Li Y., Jombart T., Weinert L. A., Wang Z., Guo Z. et al. 2013; Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proc Natl Acad Sci U S A110:577–582 [CrossRef][PubMed]
    [Google Scholar]
  13. Davies M. R., Holden M. T., Coupland P., Chen J. H., Venturini C., Barnett T. C., Zakour N. L., Tse H., Dougan G. et al. 2015; Emergence of scarlet fever Streptococcus pyogenes emm12 clones in Hong Kong is associated with toxin acquisition and multidrug resistance. Nat Genet47:84–87 [CrossRef][PubMed]
    [Google Scholar]
  14. Devault A. M., Golding G. B., Waglechner N., Enk J. M., Kuch M., Tien J. H., Shi M., Fisman D. N., Dhody A. N. et al. 2014; Second-pandemic strain of Vibrio cholerae from the Philadelphia cholera outbreak of 1849. N Engl J Med370:334–340 [CrossRef][PubMed]
    [Google Scholar]
  15. Didelot X., Eyre D. W., Cule M., Ip C. L., Ansari M. A., Griffiths D., Vaughan A., O'Connor L., Golubchik T. et al. 2012; Microevolutionary analysis of Clostridium difficile genomes to investigate transmission. Genome Biol13:R118 [CrossRef][PubMed]
    [Google Scholar]
  16. Drummond A. J., Suchard M. A., Xie D., Rambaut A.. 2012; Bayesian phylogenetics with BEAUti and the beast 1.7. Mol Biol Evol29:1969–1973 [CrossRef][PubMed]
    [Google Scholar]
  17. Duchêne S., Holmes E. C., Ho S. Y. W.. 2014; Analyses of evolutionary dynamics in viruses are hindered by a time-dependent bias in rate estimates. Proc Biol Sci281:20140732 [CrossRef][PubMed]
    [Google Scholar]
  18. Duchêne S., Ho S., Holmes E. C.. 2015a; Declining transition/transversion ratios through time reveal limitations to the accuracy of nucleotide substitution models. BMC Evol Biol15:36 [CrossRef]
    [Google Scholar]
  19. Duchêne S., Duchêne D., Holmes E. C., Ho S. Y. W.. 2015b; The performance of the date-randomization test in Phylogenetic analyses of time-structured virus data. Mol Biol Evol32:1895–1906 [CrossRef]
    [Google Scholar]
  20. Eldholm V., Monteserin J., Rieux A., Lopez B., Sobkowiak B., Ritacco V., Balloux F.. 2015; Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain. Nat Commun6:7119 [CrossRef][PubMed]
    [Google Scholar]
  21. Eyre-Walker A., Keightley P. D.. 2007; The distribution of fitness effects of new mutations. Nat Rev Genet8:610–618 [CrossRef][PubMed]
    [Google Scholar]
  22. Firth C., Kitchen A., Shapiro B., Suchard M. A., Holmes E. C., Rambaut A.. 2010; Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses. Mol Biol Evol27:2038–2051 [CrossRef][PubMed]
    [Google Scholar]
  23. Gaiarsa S., Comandatore F., Gaibani P., Corbella M., Dalla Valle C., Epis S., Scaltriti E., Carretto E., Farina C. et al. 2015; Genomic epidemiology of Klebsiella pneumoniae in Italy and novel insights into the origin and global evolution of its resistance to carbapenem antibiotics. Antimicrob Agents Chemother59:389–396 [CrossRef][PubMed]
    [Google Scholar]
  24. Gibbs M. J., Armstrong J. S., Gibbs A. J.. 2000; Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics16:573–582 [CrossRef][PubMed]
    [Google Scholar]
  25. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O.. 2010; New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol59:307–321 [CrossRef][PubMed]
    [Google Scholar]
  26. Hedge J., Wilson D. J.. 2014; Bacterial phylogenetic reconstruction from whole genomes is robust to recombination but demographic inference is not. MBio5:e0215814 [CrossRef][PubMed]
    [Google Scholar]
  27. Ho S. Y., Larson G.. 2006; Molecular clocks: when times are a-changin'. Trends Genet22:79–83 [CrossRef][PubMed]
    [Google Scholar]
  28. Ho S. Y., Lanfear R., Bromham L., Phillips M. J., Soubrier J., Rodrigo A. G., Cooper A.. 2011; Time-dependent rates of molecular evolution. Mol Ecol20:3087–3101 [CrossRef][PubMed]
    [Google Scholar]
  29. Ho S. Y. W., Duchêne S., Molak M., Shapiro B.. 2015a; Time-dependent estimates of molecular evolutionary rates: evidence and causes. Mol Ecol24:6007–6012 [CrossRef]
    [Google Scholar]
  30. Ho S. Y. W., Duchêne S., Duchêne D.. 2015b; Simulating and detecting autocorrelation of molecular evolutionary rates among lineages. Mol Ecol Resour15:688–696 [CrossRef]
    [Google Scholar]
  31. Holden M. T., Hsu L. Y., Kurt K., Weinert L. A., Mather A. E., Harris S. R., Strommenger B., Layer F., Witte W. et al. 2013; A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res23:653–664 [CrossRef][PubMed]
    [Google Scholar]
  32. Holt K. E., Parkhill J., Mazzoni C. J., Roumagnac P., Weill F. X., Goodhead I., Rance R., Baker S., Maskell D. J. et al. 2008; High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat Genet40:987–993 [CrossRef][PubMed]
    [Google Scholar]
  33. Holt K. E., Baker S., Weill F. X., Holmes E. C., Kitchen A., Yu J., Sangal V., Brown D. J., Coia J. E. et al. 2012; Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nat Genet44:1056–1059 [CrossRef][PubMed]
    [Google Scholar]
  34. Holt K. E., Thieu Nga T. V., Thanh D. P., Vinh H., Kim D. W., Vu Tra M. P., Campbell J. I., Hoang N. V., Vinh N. T. et al. 2013; Tracking the establishment of local endemic populations of an emergent enteric pathogen. Proc Natl Acad Sci U S A110:17522–17527 [CrossRef][PubMed]
    [Google Scholar]
  35. Holt K., Kenyon J. J., Hamidian M., Schultz M. B., Pickard D. J., Dougan G., Hall R.. 2016; Five decades of genome evolution in the globally distributed, extensively antibiotic-resistant Acinetobacter baumannii global clone 1. Microb Genomics2: doi: 10.1099/mgen.0.000052
    [Google Scholar]
  36. Howden B. P., Holt K. E., Lam M. M., Seemann T., Ballard S., Coombs G. W., Tong S. Y., Grayson M. L., Johnson P. D., Stinear T. P.. 2013; Genomic insights to control the emergence of vancomycin-resistant enterococci. MBio4:e0041200413 [CrossRef][PubMed]
    [Google Scholar]
  37. Kay G. L., Sergeant M. J., Zhou Z., Chan J. Z.-M., Millard A., Quick J., Szikossy I., Pap I., Spigelman M. et al. 2015; Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe. Nat Commun6:6717 [CrossRef][PubMed]
    [Google Scholar]
  38. Kennemann L., Didelot X., Aebischer T., Kuhn S., Drescher B., Droege M., Reinhardt R., Correa P., Meyer T. F. et al. 2011; Helicobacter pylori genome evolution during human infection. Proc Natl Acad Sci U S A108:5033–5038 [CrossRef][PubMed]
    [Google Scholar]
  39. Lapierre M., Blin C., Lambert A., Achaz G., Rocha E. P.. 2016; The impact of selection, gene conversion, and biased sampling on the assessment of microbial demography. Mol Biol Evol33:1711–1725 [CrossRef][PubMed]
    [Google Scholar]
  40. Le Hello S., Bekhit A., Granier S. A., Barua H., Beutlich J., Zajac M., Münch S., Sintchenko V., Bouchrif B. et al. 2013; The global establishment of a highly-fluoroquinolone resistant Salmonella enterica serotype Kentucky ST198 strain. Front Microbiol4:395 [CrossRef][PubMed]
    [Google Scholar]
  41. Maixner F., Krause-Kyora B., Turaev D., Herbig A., Hoopmann M. R., Hallows J. L., Kusebauch U., Vigl E. E., Malfertheiner P. et al. 2016; The 5300-year-old Helicobacter pylori genome of the Iceman. Science351:162–165 [CrossRef][PubMed]
    [Google Scholar]
  42. Martin D., Rybicki E.. 2000; RDP: detection of recombination amongst aligned sequences. Bioinformatics16:562–563 [CrossRef][PubMed]
    [Google Scholar]
  43. Martin D. P., Murrell B., Golden M., Khoosal A., Muhire B.. 2015; RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol1:vev003 [CrossRef]
    [Google Scholar]
  44. Marvig R. L., Johansen H. K., Molin S., Jelsbak L.. 2013; Genome analysis of a transmissible lineage of pseudomonas aeruginosa reveals pathoadaptive mutations and distinct evolutionary paths of hypermutators. PLoS Genet9:e1003741 [CrossRef][PubMed]
    [Google Scholar]
  45. Merker M., Blin C., Mona S., Duforet-Frebourg N., Lecher S., Willery E., Blum M. G., Rüsch-Gerdes S., Mokrousov I. et al. 2015; Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet47:242–249 [CrossRef][PubMed]
    [Google Scholar]
  46. Molak M., Ho S. Y. W.. 2015; Prolonged decay of molecular rate estimates for metazoan mitochondrial DNA. PeerJ3:e821 [CrossRef][PubMed]
    [Google Scholar]
  47. Morelli G., Song Y., Mazzoni C. J., Eppinger M., Roumagnac P., Wagner D. M., Feldkamp M., Kusecek B., Vogler A. J. et al. 2010; Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat Genet42:1140–1143 [CrossRef][PubMed]
    [Google Scholar]
  48. Murray G. G., Wang F., Harrison E. M., Paterson G. K., Mather A. E., Harris S. R., Holmes M. A., Rambaut A., Welch J. J.. 2015; The effect of genetic structure on molecular dating and tests for temporal signal. Methods Ecol Evol7:80–89 [CrossRef][PubMed]
    [Google Scholar]
  49. Nelder J. A., Mead R.. 1965; A simplex method for function minimization. Comput J7:308–313 [CrossRef]
    [Google Scholar]
  50. Njamkepo E., Fawal N., Tran-Dien A., Hawkey J., Strockbine N., Jenkins C., Talukder K. A., Bercion R., Kuleshov K. et al. 2016; Global phylogeography and evolutionary history of Shigella dysenteriae type 1. Nat Microbiol1:16027 [CrossRef][PubMed]
    [Google Scholar]
  51. O'Fallon B. D.. 2010; A method to correct for the effects of purifying selection on genealogical inference. Mol Biol Evol27:2406–2416 [CrossRef][PubMed]
    [Google Scholar]
  52. Padidam M., Sawyer S., Fauquet C. M.. 1999; Possible emergence of new geminiviruses by frequent recombination. Virology265:218–225 [CrossRef][PubMed]
    [Google Scholar]
  53. Penny D.. 2005; Evolutionary biology: relativity for molecular clocks. Nature436:183–184 [CrossRef][PubMed]
    [Google Scholar]
  54. Pérez-Losada M., Crandall K. A., Zenilman J., Viscidi R. P.. 2007; Temporal trends in gonococcal population genetics in a high prevalence urban community. Infect Genet Evol7:271–278 [CrossRef][PubMed]
    [Google Scholar]
  55. Rambaut A., Lam T. T., Max Carvalho L., Pybus O. G.. 2016; Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol2:vew007 [CrossRef][PubMed]
    [Google Scholar]
  56. Rasmussen S., Allentoft M. E., Nielsen K., Orlando L., Sikora M., Sjögren K. G., Pedersen A. G., Schubert M., Van Dam A. et al. 2015; Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell163:571–582 [CrossRef][PubMed]
    [Google Scholar]
  57. Rocha E. P., Touchon M., Feil E. J.. 2006; Similar compositional biases are caused by very different mutational effects. Genome Res16:1537–1547 [CrossRef][PubMed]
    [Google Scholar]
  58. Salminen M. O., Carr J. K., Burke D. S., McCutchan F. E.. 1995; Identification of breakpoints in intergenotypic recombinants of HIV type 1 by bootscanning. AIDS Res Hum Retroviruses11:1423–1425 [CrossRef][PubMed]
    [Google Scholar]
  59. Schuenemann V. J., Singh P., Mendum T. A., Krause-Kyora B., Jäger G., Bos K. I., Herbig A., Economou C., Benjak A. et al. 2013; Genome-wide comparison of medieval and modern Mycobacterium leprae. Science341:179–183 [CrossRef][PubMed]
    [Google Scholar]
  60. Schultz M. B., Thanh D. P., Do Hoan N. T., Wick R. R., Ingle D. J., Hawkey J., Edwards D. J., Kenyon J. J., Lan N. P. H. et al. 2016; Repeated local emergence of carbapenem-resistant Acinetobacter baumannii in a single hospital ward. Microbial Genomics2: doi:10.1099/mgen.0.000050
    [Google Scholar]
  61. Smith J. M.. 1992; Analyzing the mosaic structure of genes. J Mol Evol34:126–129 [CrossRef][PubMed]
    [Google Scholar]
  62. Stinear T. P., Holt K. E., Chua K., Stepnell J., Tuck K. L., Coombs G., Harrison P. F., Seemann T., Howden B. P.. 2014; Adaptive change inferred from genomic population analysis of the ST93 epidemic clone of community-associated methicillin-resistant Staphylococcus aureus. Genome Biol Evol6:366–378 [CrossRef][PubMed]
    [Google Scholar]
  63. Uhlemann A. C., Dordel J., Knox J. R., Raven K. E., Parkhill J., Holden M. T., Peacock S. J., Lowy F. D.. 2014; Molecular tracing of the emergence, diversification, and transmission of S. aureus sequence type 8 in a New York community. Proc Natl Acad Sci U S A111:6738–6743 [CrossRef][PubMed]
    [Google Scholar]
  64. Wagner D. M., Klunk J., Harbeck M., Devault A., Waglechner N., Sahl J. W., Enk J., Birdsell D. N., Kuch M. et al. 2014; Yersinia pestis and the plague of Justinian 541-543 AD: a genomic analysis. Lancet Infect Dis14:319–326 [CrossRef][PubMed]
    [Google Scholar]
  65. Ward M. J., Gibbons C. L., McAdam P. R., van Bunnik B. A., Girvan E. K., Edwards G. F., Fitzgerald J. R., Woolhouse M. E.. 2014; Time-scaled evolutionary analysis of the transmission and antibiotic resistance dynamics of Staphylococcus aureus clonal complex 398. Appl Environ Microbiol80:7275–7282 [CrossRef][PubMed]
    [Google Scholar]
  66. Weller C., Wu M.. 2015; A generation-time effect on the rate of molecular evolution in bacteria. Evolution69:643–652 [CrossRef][PubMed]
    [Google Scholar]
  67. Xie W., Lewis P. O., Fan Y., Kuo L., Chen M. H.. 2011; Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst Biol60:150–160 [CrossRef][PubMed]
    [Google Scholar]
  68. Yahara K., Didelot X., Jolley K. A., Kobayashi I., Maiden M. C., Sheppard S. K., Falush D.. 2016; The landscape of realized homologous recombination in pathogenic bacteria. Mol Biol Evol33:456–471 [CrossRef][PubMed]
    [Google Scholar]
  69. Zhou Z., McCann A., Litrup E., Murphy R., Cormican M., Fanning S., Brown D., Guttman D. S., Brisse S., Achtman M.. 2013; Neutral genomic microevolution of a recently emerged pathogen, Salmonella enterica serovar Agona. PLoS Genet9:e1003471 [CrossRef][PubMed]
    [Google Scholar]
  70. Zhou Z., McCann A., Weill F. X., Blin C., Nair S., Wain J., Dougan G., Achtman M.. 2014; Transient Darwinian selection in Salmonella enterica serovar Paratyphi A during 450 years of global spread of enteric fever. Proc Natl Acad Sci U S A111:12199–12204 [CrossRef][PubMed]
    [Google Scholar]
  71. All the data sets used here are available online athttp://zenodo.org/record/45951#.Vr1M-JN95E4
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000094
Loading
/content/journal/mgen/10.1099/mgen.0.000094
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error