RT Journal Article SR Electronic(1) A1 Eckert, Sabine E. A1 Chan, Jackie Z.-M. A1 Houniet, Darren A1 the PATHSEEK consortium, A1 Breuer, Judy A1 Speight, GrahamYR 2016 T1 Enrichment by hybridisation of long DNA fragments for Nanopore sequencing JF Microbial Genomics, VO 2 IS 9 OP SP e000087 DO https://doi.org/10.1099/mgen.0.000087 PB Microbiology Society, SN 2057-5858, AB Enrichment of DNA by hybridisation is an important tool which enables users to gather target-focused next-generation sequence data in an economical fashion. Current in-solution methods capture short fragments of around 200–300 nt, potentially missing key structural information such as recombination or translocations often found in viral or bacterial pathogens. The increasing use of long-read third-generation sequencers requires methods and protocols to be adapted for their specific requirements. Here, we present a variation of the traditional bait–capture approach which can selectively enrich large fragments of DNA or cDNA from specific bacterial and viral pathogens, for sequencing on long-read sequencers. We enriched cDNA from cultured influenza virus A, human cytomegalovirus (HCMV) and genomic DNA from two strains of Mycobacterium tuberculosis (M. tb) from a background of cell line or spiked human DNA. We sequenced the enriched samples on the Oxford Nanopore MinION™ and the Illumina MiSeq platform and present an evaluation of the method, together with analysis of the sequence data. We found that unenriched influenza A and HCMV samples had no reads matching the target organism due to the high background of DNA from the cell line used to culture the pathogen. In contrast, enriched samples sequenced on the MinION™ platform had 57 % and 99 % best-quality on-target reads respectively., UL https://www.microbiologyresearch.org/content/journal/mgen/10.1099/mgen.0.000087