1887

Abstract

Enrichment of DNA by hybridisation is an important tool which enables users to gather target-focused next-generation sequence data in an economical fashion. Current in-solution methods capture short fragments of around 200–300 nt, potentially missing key structural information such as recombination or translocations often found in viral or bacterial pathogens. The increasing use of long-read third-generation sequencers requires methods and protocols to be adapted for their specific requirements. Here, we present a variation of the traditional bait–capture approach which can selectively enrich large fragments of DNA or cDNA from specific bacterial and viral pathogens, for sequencing on long-read sequencers. We enriched cDNA from cultured influenza virus A, human cytomegalovirus (HCMV) and genomic DNA from two strains of Mycobacterium tuberculosis (M. tb) from a background of cell line or spiked human DNA. We sequenced the enriched samples on the Oxford Nanopore MinION™ and the Illumina MiSeq platform and present an evaluation of the method, together with analysis of the sequence data. We found that unenriched influenza A and HCMV samples had no reads matching the target organism due to the high background of DNA from the cell line used to culture the pathogen. In contrast, enriched samples sequenced on the MinION™ platform had 57 % and 99 % best-quality on-target reads respectively.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000087
2016-09-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/9/mgen000087.html?itemId=/content/journal/mgen/10.1099/mgen.0.000087&mimeType=html&fmt=ahah

References

  1. Ammar R., Paton T. A., Torti D., Shlien A., Bader G. D.. 2015; Long read nanopore sequencing for detection of HLA and CYP2D6 variants and haplotypes. F1000Res4:17 [CrossRef][PubMed]
    [Google Scholar]
  2. Ashton P. M., Nair S., Dallman T., Rubino S., Rabsch W., Mwaigwisya S., Wain J., O'Grady J.. 2015; MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol33:296–300 [CrossRef][PubMed]
    [Google Scholar]
  3. Brown A. C., Bryant J. M., Einer-Jensen K., Holdstock J., Houniet D. T., Chan J. Z., Depledge D. P., Nikolayevskyy V., Broda A. et al. 2015; Rapid whole-genome sequencing of Mycobacterium tuberculosis Isolates directly from clinical samples. J Clin Microbiol53:2230–2237 [CrossRef][PubMed]
    [Google Scholar]
  4. Carlet J.. 2015; The world alliance against antibiotic resistance: consensus for a declaration. Clin Infect Dis60:1837–1841 [CrossRef][PubMed]
    [Google Scholar]
  5. Chaisson M. J., Tesler G.. 2012; Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics13:238 [CrossRef][PubMed]
    [Google Scholar]
  6. Chen Z., Sugano S., Watanabe S.. 1999; A 189-bp repeat region within the human cytomegalovirus replication origin contains a sequence dispensable but irreplaceable with other sequences. Virology258:240–248 [CrossRef][PubMed]
    [Google Scholar]
  7. Christiansen M. T., Brown A. C., Kundu S., Tutill H. J., Williams R., Brown J. R., Holdstock J., Holland M. J., Stevenson S. et al. 2014; Whole-genome enrichment and sequencing of Chlamydia trachomatis directly from clinical samples. BMC Infect Dis14:591 [CrossRef][PubMed]
    [Google Scholar]
  8. Depledge D. P., Palser A. L., Watson S. J., Lai I. Y., Gray E. R., Grant P., Kanda R. K., Leproust E., Kellam P., Breuer J.. 2011; Specific capture and whole-genome sequencing of viruses from clinical samples. PLoS One6:e27805 [CrossRef][PubMed]
    [Google Scholar]
  9. Doughty E. L., Sergeant M. J., Adetifa I., Antonio M., Pallen M. J.. 2014; Culture-independent detection and characterisation of Mycobacterium tuberculosis and M. africanum in sputum samples using shotgun metagenomics on a benchtop sequencer. PeerJ2:e585 [CrossRef][PubMed]
    [Google Scholar]
  10. Greninger A. L., Naccache S. N., Federman S., Yu G., Mbala P., Bres V., Stryke D., Bouquet J., Somasekar S. et al. 2015; Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med7:99 [CrossRef][PubMed]
    [Google Scholar]
  11. Jiang J., Gu J., Zhang L., Zhang C., Deng X., Dou T., Zhao G., Zhou Y.. 2015; Comparing Mycobacterium tuberculosis genomes using genome topology networks. BMC Genomics16:85 [CrossRef][PubMed]
    [Google Scholar]
  12. Joseph S. J., Read T. D.. 2012; Genome-wide recombination in Chlamydia trachomatis. Nat Genet44:364–366 [CrossRef][PubMed]
    [Google Scholar]
  13. Karamitros T., Magiorkinis G.. 2015; A novel method for the multiplexed target enrichment of MinION next generation sequencing libraries using PCR-generated baits. Nucleic Acids Res43:e152e152 [CrossRef][PubMed]
    [Google Scholar]
  14. Karamitros T., Harrison I., Piorkowska R., Katzourakis A., Magiorkinis G., Mbisa J. L.. 2016; De Novo assembly of human herpes virus type 1 (HHV-1) genome, mining of non-canonical structures and detection of novel drug-resistance mutations using short- and long-read next generation sequencing technologies. PLoS One11:e0157600 [CrossRef][PubMed]
    [Google Scholar]
  15. Kiełbasa S. M., Wan R., Sato K., Horton P., Frith M. C.. 2011; Adaptive seeds tame genomic sequence comparison. Genome Res21:487–493 [CrossRef][PubMed]
    [Google Scholar]
  16. Kilianski A., Haas J. L., Corriveau E. J., Liem A. T., Willis K. L., Kadavy D. R., Rosenzweig C. N., Minot S. S.. 2015; Bacterial and viral identification and differentiation by amplicon sequencing on the minION nanopore sequencer. Gigascience4:12 [CrossRef][PubMed]
    [Google Scholar]
  17. Loman N. J., Quinlan A. R.. 2014; Poretools: a toolkit for analyzing nanopore sequence data. Bioinformatics30:3399–3401 [CrossRef][PubMed]
    [Google Scholar]
  18. Loman N. J., Constantinidou C., Christner M., Rohde H., Chan J. Z., Quick J., Weir J. C., Quince C., Smith G. P. et al. 2013; A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. Jama309:1502–1510
    [Google Scholar]
  19. Masse M. J., Karlin S., Schachtel G. A., Mocarski E. S.. 1992; Human cytomegalovirus origin of DNA replication (oriLyt) resides within a highly complex repetitive region. Proc Natl Acad Sci U S A89:5246–5250 [CrossRef][PubMed]
    [Google Scholar]
  20. Norris A. L., Workman R. E., Fan Y., Eshleman J. R., Timp W.. 2016; Nanopore sequencing detects structural variants in cancer. Cancer Biol Ther17:246–253 [CrossRef][PubMed]
    [Google Scholar]
  21. Noé L., Kucherov G.. 2005; YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Res33:W540–543 [CrossRef][PubMed]
    [Google Scholar]
  22. Quick J., Loman N. J., Duraffour S., Simpson J. T., Severi E., Cowley L., Bore J. A., Koundouno R., Dudas G. et al. 2016; Real-time, portable genome sequencing for Ebola surveillance. Nature530:228–232 [CrossRef][PubMed]
    [Google Scholar]
  23. Quick J., Quinlan A. R., Loman N. J.. 2014; A reference bacterial genome dataset generated on the MinION™ portable single-molecule nanopore sequencer. Gigascience3:22 [CrossRef][PubMed]
    [Google Scholar]
  24. Robinson J. T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E. S., Getz G., Mesirov J. P.. 2011; Integrative genomics viewer. Nat Biotechnol29:24–26 [CrossRef][PubMed]
    [Google Scholar]
  25. Samorodnitsky E., Jewell B. M., Hagopian R., Miya J., Wing M. R., Lyon E., Damodaran S., Bhatt D., Reeser J. W. et al. 2015; Evaluation of hybridization capture versus amplicon-based methods for whole-exome sequencing. Hum Mutat36:903–914 [CrossRef][PubMed]
    [Google Scholar]
  26. Thorvaldsdóttir H., Robinson J. T., Mesirov J. P.. 2013; Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform14:178–192 [CrossRef][PubMed]
    [Google Scholar]
  27. Witney A. A., Gould K. A., Arnold A., Coleman D., Delgado R., Dhillon J., Pond M. J., Pope C. F., Planche T. D. et al. 2015; Clinical application of whole-genome sequencing to inform treatment for multidrug-resistant tuberculosis cases. J Clin Microbiol53:1473–1483 [CrossRef][PubMed]
    [Google Scholar]
  28. Wlodarska M., Johnston J. C., Gardy J. L., Tang P.. 2015; A microbiological revolution meets an ancient disease: improving the management of tuberculosis with genomics. Clin Microbiol Rev28:523–539 [CrossRef][PubMed]
    [Google Scholar]
  29. The following reference sequences were used
  30. Human CMV herpesvirus: HHV-5 GU1790079001.1http://www.ncbi.nlm.nih.gov/nuccore/GU179001.1
  31. M. tb: strain H37Rv NC_018143.018143.2http://www.ncbi.nlm.nih.gov/nuccore/NC_018143.2
  32. Influenza virus: strain H1N1, A/Puerto Rico/8/1934http://www.ncbi.nlm.nih.gov/nuccore/8486138
  33. Human: Human_g1k_v37www.1000genomes.org
  34. Dog: CanFam3.1 GCA_000002285.2, NC_006583.3http://www.ncbi.nlm.nih.gov/nuccore/NC_006583.3
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000087
Loading
/content/journal/mgen/10.1099/mgen.0.000087
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error