1887

Abstract

Translating the Oxford Nanopore MinION sequencing technology into medical microbiology requires on-going analysis that keeps pace with technological improvements to the instrument and release of associated analysis software. Here, we use a multidrug-resistant Enterobacter kobei isolate as a model organism to compare open source software for the assembly of genome data, and relate this to the time taken to generate actionable information. Three software tools (PBcR, Canu and miniasm) were used to assemble MinION data and a fourth (SPAdes) was used to combine MinION and Illumina data to produce a hybrid assembly. All four had a similar number of contigs and were more contiguous than the assembly using Illumina data alone, with SPAdes producing a single chromosomal contig. Evaluation of the four assemblies to represent the genome structure revealed a single large inversion in the SPAdes assembly, which also incorrectly integrated a plasmid into the chromosomal contig. Almost 50 %, 80 % and 90 % of MinION pass reads were generated in the first 6, 9 and 12 h, respectively. Using data from the first 6 h alone led to a less accurate, fragmented assembly, but data from the first 9 or 12 h generated similar assemblies to that from 48 h sequencing. Assemblies were generated in 2 h using Canu, indicating that going from isolate to assembled data is possible in less than 48 h. MinION data identified that genes responsible for resistance were carried by two plasmids encoding resistance to carbapenem and to sulphonamides, rifampicin and aminoglycosides, respectively.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000085
2016-09-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/9/mgen000085.html?itemId=/content/journal/mgen/10.1099/mgen.0.000085&mimeType=html&fmt=ahah

References

  1. Ashton P. M., Nair S., Dallman T., Rubino S., Rabsch W., Mwaigwisya S., Wain J., O'Grady J.. 2015; MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol33:296–300 [CrossRef][PubMed]
    [Google Scholar]
  2. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S. et al. 2012; SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  3. Berlin K., Koren S., Chin C. S., Drake J. P., Landolin J. M., Phillippy A. M.. 2015; Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol33:623–630 [CrossRef]
    [Google Scholar]
  4. Boetzer M., Pirovano W.. 2012; Toward almost closed genomes with gapfiller. Genome Biol13:R56 [CrossRef][PubMed]
    [Google Scholar]
  5. Boetzer M., Henkel C. V., Jansen H. J., Butler D., Pirovano W.. 2011; Scaffolding pre-assembled contigs using SSPACE. Bioinformatics27:578–579 [CrossRef][PubMed]
    [Google Scholar]
  6. Bolger A. M., Lohse M., Usadel B.. 2014; Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  7. Bonfield J. K., Whitwham A.. 2010; Gap5–editing the billion fragment sequence assembly. Bioinformatics26:1699–1703 [CrossRef][PubMed]
    [Google Scholar]
  8. Bradley P., Gordon N. C., Walker T. M., Dunn L., Heys S., Huang B., Earle S., Pankhurst L. J., Anson L. et al. 2015; Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun6:10063 [CrossRef][PubMed]
    [Google Scholar]
  9. Cao M., Ganesamoorthy D., Elliott A., Zhang H., Cooper M., Coin L.. 2015; Streaming algorithms for identification of pathogens and antibiotic resistance potential from real-time MinION sequencing.
  10. GitHub 2016; martinghunt/bioinf-scripts. [online]. https://github.com/martinghunt/bioinf-scripts/blob/master/python/multi_act_cartoon.py Accessed on 17 May 2016
  11. Gurevich A., Saveliev V., Vyahhi N., Tesler G.. 2013; QUAST: quality assessment tool for genome assemblies. Bioinformatics29:1072–1075 [CrossRef][PubMed]
    [Google Scholar]
  12. Hoffmann H., Roggenkamp A.. 2003; Population genetics of the nomenspecies Enterobacter cloacae. Appl Environ Microbiol69:5306–5318 [CrossRef]
    [Google Scholar]
  13. Hunt M., Silva N. D., Otto T. D., Parkhill J., Keane J. A., Harris S. R.. 2015; Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol16:294 [CrossRef][PubMed]
    [Google Scholar]
  14. Judge K., Harris S. R., Reuter S., Parkhill J., Peacock S. J.. 2015; Early insights into the potential of the Oxford Nanopore MinION for the detection of antimicrobial resistance genes. J Antimicrob Chemother70:2775–2778 [CrossRef][PubMed]
    [Google Scholar]
  15. Koren S., Schatz M. C., Walenz B. P., Martin J., Howard J. T., Ganapathy G., Wang Z., Rasko D. A., McCombie W. R. et al. 2012; Hybrid error correction and De novo assembly of single-molecule sequencing reads. Nat Biotechnol30:693–700 [CrossRef][PubMed]
    [Google Scholar]
  16. Kurtz S., Phillippy A., Delcher A. L., Smoot M., Shumway M., Antonescu C., Salzberg S. L.. 2004; Versatile and open software for comparing large genomes. Genome Biol5:R12 [CrossRef][PubMed]
    [Google Scholar]
  17. Li H.. 2013; Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997v1 [q-bio.GN]
  18. Li H.. 2016; Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics32:2103–2110 [CrossRef][PubMed]
    [Google Scholar]
  19. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R.. 1000 Genome Project Data Processing Subgroup 2009; The sequence alignment/map format and SAMtools. Bioinformatics25:2078–2079 [CrossRef][PubMed]
    [Google Scholar]
  20. Loman N. J., Quinlan A. R.. 2014; Poretools: a toolkit for analyzing nanopore sequence data. Bioinformatics30:3399–3401 [CrossRef][PubMed]
    [Google Scholar]
  21. Loman N. J., Quick J., Simpson J. T.. 2015; A complete bacterial genome assembled De novo using only nanopore sequencing data. Nat Methods12:733–735 [CrossRef][PubMed]
    [Google Scholar]
  22. Otto T. D., Sanders M., Berriman M., Newbold C.. 2010; Iterative correction of reference Nucleotides (iCORN) using second generation sequencing technology. Bioinformatics26:1704–1707 [CrossRef][PubMed]
    [Google Scholar]
  23. Quail M., Smith M. E., Coupland P., Otto T. D., Harris S. R., Connor T. R., Bertoni A., Swerdlow H. P., Gu Y.. 2012; A tale of three next generation sequencing platforms: comparison of Ion torrent, Pacific Biosciences and illumina MiSeq sequencers. BMC Genomics13:341 [CrossRef]
    [Google Scholar]
  24. Quick J., Loman N. J., Duraffour S., Simpson J. T., Severi E., Cowley L., Bore J. A., Koundouno R., Dudas G. et al. 2016; Real-time, portable genome sequencing for Ebola surveillance. Nature530:228–232 [CrossRef][PubMed]
    [Google Scholar]
  25. Reuter S., Ellington M. J., Cartwright E. J. P., Köser C. U., Török M. E., Gouliouris T., Harris S. R., Brown N. M., Holden M. T. G. et al. 2013; Rapid bacterial whole-genome sequencing to enhance diagnostic and public health microbiology. JAMA Intern Med173:1397 [CrossRef][PubMed]
    [Google Scholar]
  26. Risse J., Thomson M., Patrick S., Blakely G., Koutsovoulos G., Blaxter M., Watson M.. 2015; A single chromosome assembly of Bacteroides fragilis strain BE1 from Illumina and MinION nanopore sequencing data. Gigascience4: [CrossRef][PubMed]
    [Google Scholar]
  27. Seemann T.. 2014; Prokka: rapid prokaryotic genome annotation. Bioinformatics30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  28. Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Aarestrup F., Larsen M.. 2012; Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother67:2640–2644
    [Google Scholar]
  29. Zerbino D. R., Birney E.. 2008; Velvet: algorithms for De novo short read assembly using de Bruijn graphs. Genome Res18:821–829 [CrossRef][PubMed]
    [Google Scholar]
  30. Zhang J., Kobert K., Flouri T., Stamatakis A.. 2014; PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics30:614–620 [CrossRef][PubMed]
    [Google Scholar]
  31. Zika Real time Sequencing Consortium 2016;http://zibraproject.github.io/
  32. Judge, K., Hunt, M., Reuter, S., Tracey, A., Quail, M. A., Parkhill, J. & Peacock, S. J. European Nucleotide Archive, ERS634378: ERR1341575 (MinION pass reads) ERR1341574 (MinION fail reads) and ERR885455 (Illumina reads). 2016
  33. Judge, K., Hunt, M., Reuter, S., Tracey, A., Quail, M. A., Parkhill, J. & Peacock, S. J. Githubhttps://github.com/kim-judge/minionassembly 2016
  34. Judge, K., Hunt, M., Reuter, S., Tracey, A., Quail, M. A., Parkhill, J. & Peacock, S. J. European Nucleotide Archive, ERS634378: FKLS01000001-FKLS01000010. 2016
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000085
Loading
/content/journal/mgen/10.1099/mgen.0.000085
Loading

Data & Media loading...

Supplements

Supplementary File 1

WORD

Supplementary File 2

EXCEL

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error