1887

Abstract

The RegB/RegA two-component system from Rhodobacter capsulatus regulates global changes in gene expression in response to alterations in oxygen levels. Studies have shown that RegB/RegA controls many energy-generating and energy-utilizing systems such as photosynthesis, nitrogen fixation, carbon fixation, hydrogen utilization, respiration, electron transport and denitrification. In this report, we utilized RNA-seq and ChIP-seq to analyse the breadth of genes indirectly and directly regulated by RegA. A comparison of mRNA transcript levels in wild type cells relative to a RegA deletion strain shows that there are 257 differentially expressed genes under photosynthetic defined minimal growth medium conditions and 591 differentially expressed genes when grown photosynthetically in a complex rich medium. ChIP-seq analysis also identified 61 unique RegA binding sites with a well-conserved recognition sequence, 33 of which exhibit changes in neighbouring gene expression. These transcriptome results define new members of the RegA regulon including genes involved in iron transport and motility. These results also reveal that the set of genes that are regulated by RegA are growth medium specific. Similar analyses under dark aerobic conditions where RegA is thought not to be phosphorylated by RegB reveal 40 genes that are differentially expressed in minimal medium and 20 in rich medium. Finally, a comparison of the R. capsulatus RegA regulon with the orthologous PrrA regulon in Rhodobacter sphaeroides shows that the number of photosystem genes regulated by RegA and PrrA are similar but that the identity of genes regulated by RegA and PrrA beyond those involved in photosynthesis are quite distinct.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000081
2016-10-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/10/mgen000081.html?itemId=/content/journal/mgen/10.1099/mgen.0.000081&mimeType=html&fmt=ahah

References

  1. Altenhoff A. M., Škunca N., Glover N., Train C. M., Sueki A., Piližota I., Gori K., Tomiczek B., Müller S. et al. 2015; The OMA orthology database in 2015: function predictions, better plant support, synteny view and other improvements. Nucleic Acids Res43:D240–D249 [CrossRef][PubMed]
    [Google Scholar]
  2. Anders S., Pyl P. T., Huber W.. 2015; HTSeq – a Python framework to work with high-throughput sequencing data. Bioinformatics31:166–169 [CrossRef][PubMed]
    [Google Scholar]
  3. Axen S. D., Erbilgin O., Kerfeld C. A.. 2014; A taxonomy of bacterial microcompartment loci constructed by a novel scoring method. PLoS Comput Biol10:e1003898 [CrossRef][PubMed]
    [Google Scholar]
  4. Bailey T. L., Boden M., Buske F. A., Frith M., Grant C. E., Clementi L., Ren J., Li W. W., Noble W. S.. 2009; MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res37:W202–W208 [CrossRef][PubMed]
    [Google Scholar]
  5. Bauer C. E., Setterdahl A., Wu J., Robinson B. R.. 2009; Regulation of Gene Expression in Response to Oxygen Tension. In The Purple Phototrophic Bacteria707–725 Hunter C. N., Daldal F., Thurnauer M. C., Beatty J. T.. Kluwer Academic Press;
    [Google Scholar]
  6. Bijlsma J. J., Groisman E. A.. 2003; Making informed decisions: regulatory interactions between two-component systems. Trends Microbiol11:359–366 [CrossRef][PubMed]
    [Google Scholar]
  7. Bird T. H., Du S., Bauer C. E.. 1999; Autophosphorylation, phosphotransfer, and DNA-binding properties of the RegB/RegA two-component regulatory system in Rhodobacter capsulatus. J Biol Chem274:16343–16348 [CrossRef][PubMed]
    [Google Scholar]
  8. Buggy J. J., Sganga M. W., Bauer C. E.. 1994; Characterization of a light-responding trans-activator responsible for differentially controlling reaction center and light-harvesting-I gene expression in Rhodobacter capsulatus. J Bacteriol176:6936–6943[PubMed]
    [Google Scholar]
  9. Capra E. J., Laub M. T.. 2012; Evolution of two-component signal transduction systems. Annu Rev Microbiol66:325–347 [CrossRef][PubMed]
    [Google Scholar]
  10. Croucher N. J., Thomson N. R.. 2010; Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol13:619–624 [CrossRef][PubMed]
    [Google Scholar]
  11. Dangel A. W., Tabita F. R.. 2009; Protein-protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides. Mol Microbiol71:717–729 [CrossRef][PubMed]
    [Google Scholar]
  12. Dangel A. W., Luther A., Tabita F. R.. 2014; Amino acid residues of RegA important for interactions with the CbbR-DNA complex of Rhodobacter sphaeroides. J Bacteriol196:3179–3190 [CrossRef][PubMed]
    [Google Scholar]
  13. Du S., Bird T. H., Bauer C. E.. 1998; DNA binding characteristics of RegA. a constitutively active anaerobic activator of photosynthesis gene expression in Rhodobacter capsulatus. J Biol Chem273:18509–18513[PubMed]
    [Google Scholar]
  14. Dubbs J. M., Bird T. H., Bauer C. E., Tabita F. R.. 2000; Interaction of CbbR and RegA* transcription regulators with the Rhodobacter sphaeroides cbbIPromoter-operator region. J Biol Chem275:19224–19230 [CrossRef][PubMed]
    [Google Scholar]
  15. Elsen S., Dischert W., Colbeau A., Bauer C. E.. 2000; Expression of uptake hydrogenase and molybdenum nitrogenase in Rhodobacter capsulatus is coregulated by the RegB-RegA two-component regulatory system. J Bacteriol182:2831–2837 [CrossRef][PubMed]
    [Google Scholar]
  16. Elsen S., Swem L. R., Swem D. L., Bauer C. E.. 2004; RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol Mol Biol Rev68:263–279 [CrossRef][PubMed]
    [Google Scholar]
  17. Gibson J. L., Dubbs J. M., Tabita F. R.. 2002; Differential expression of the CO2 fixation operons of Rhodobacter sphaeroides by the Prr/Reg two-component system during chemoautotrophic growth. J Bacteriol184:6654–6664 [CrossRef][PubMed]
    [Google Scholar]
  18. Grammel H., Ghosh R.. 2008; Redox-state dynamics of ubiquinone-10 imply cooperative regulation of photosynthetic membrane expression in Rhodospirillum rubrum. J Bacteriol190:4912–4921 [CrossRef][PubMed]
    [Google Scholar]
  19. Hemschemeier S. K., Kirndörfer M., Hebermehl M., Klug G.. 2000; DNA binding of wild type RegA protein and its differential effect on the expression of pigment binding proteins in Rhodobacter capsulatus. J Mol Microbiol Biotechnol2:235–243[PubMed]
    [Google Scholar]
  20. Imam S., Noguera D. R., Donohue T. J.. 2014; Global analysis of photosynthesis transcriptional regulatory networks. PLoS Genet10:e1004837 [CrossRef][PubMed]
    [Google Scholar]
  21. Inoue K., Kouadio J. L., Mosley C. S., Bauer C. E.. 1995; Isolation and in vitro phosphorylation of sensory transduction components controlling anaerobic induction of light harvesting and reaction center gene expression in Rhodobacter capsulatus. Biochemistry34:391–396 [CrossRef][PubMed]
    [Google Scholar]
  22. Jorda J., Lopez D., Wheatley N. M., Yeates T. O.. 2013; Using comparative genomics to uncover new kinds of protein-based metabolic organelles in bacteria. Protein Sci22:179–195 [CrossRef][PubMed]
    [Google Scholar]
  23. Kappler U., Huston W. M., McEwan A. G.. 2002; Control of dimethylsulfoxide reductase expression in Rhodobacter capsulatus: the role of carbon metabolites and the response regulators DorR and RegA. Microbiology148:605–614 [CrossRef][PubMed]
    [Google Scholar]
  24. Khan S. R., Gaines J., Roop R. M., Farrand S. K.. 2008; Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. Appl Environ Microbiol74:5053–5062 [CrossRef][PubMed]
    [Google Scholar]
  25. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M., Peterson K. M.. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176 [CrossRef][PubMed]
    [Google Scholar]
  26. Kumka J. E., Bauer C. E.. 2015; Analysis of the FnrL regulon in Rhodobacter capsulatus reveals limited regulon overlap with orthologues from Rhodobacter sphaeroides and Escherichia coli. BMC Genomics16:895 [CrossRef][PubMed]
    [Google Scholar]
  27. Langmead B., Salzberg S. L.. 2012; Fast gapped-read alignment with Bowtie 2. Nat methods9:357–359
    [Google Scholar]
  28. Love M. I., Huber W., Anders S.. 2014; Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol15:550 [CrossRef][PubMed]
    [Google Scholar]
  29. McCrindle S. L., Kappler U., McEwan A. G.. 2005; Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration. Adv Microb Physiol50:147–198 [CrossRef][PubMed]
    [Google Scholar]
  30. Mosley C. S., Suzuki J. Y., Bauer C. E.. 1994; Identification and molecular genetic characterization of a sensor kinase responsible for coordinately regulating light harvesting and reaction center gene expression in response to anaerobiosis. J Bacteriol176:7566–7573[PubMed]
    [Google Scholar]
  31. Park P. J.. 2009; ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet10:669–680 [CrossRef][PubMed]
    [Google Scholar]
  32. Richardson D. J., Bell L. C., McEwan A. G., Jackson J. B., Ferguson S. J.. 1991; Cytochrome c2 is essential for electron transfer to nitrous oxide reductase from physiological substrates in Rhodobacter capsulatus and can act as an electron donor to the reductase in vitro. correlation with photoinhibition studies. Eur J Biochem199:677–683 [CrossRef][PubMed]
    [Google Scholar]
  33. Richardson D. J., Bell L. C., Moir J. W. B., Ferguson S. J.. 1994; A denitrifying strain of Rhodobacter capsulatus. FEMS Microbiology Letters120:323–328 [CrossRef]
    [Google Scholar]
  34. Robles J. A., Qureshi S. E., Stephen S. J., Wilson S. R., Burden C. J., Taylor J. M.. 2012; Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing. BMC Genomics13:484 [CrossRef][PubMed]
    [Google Scholar]
  35. Rodionov D. A., Gelfand M. S., Todd J. D., Curson A. R., Johnston A. W.. 2006; Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-proteobacteria. PLoS Comput Biol2:e163 [CrossRef][PubMed]
    [Google Scholar]
  36. Sezonov G., Joseleau-Petit D., D'Ari R.. 2007; Escherichia coli physiology in Luria-Bertani broth. J Bacteriol189:8746–8749 [CrossRef][PubMed]
    [Google Scholar]
  37. Sganga M. W., Bauer C. E.. 1992; Regulatory factors controlling photosynthetic reaction center and light-harvesting gene expression in Rhodobacter capsulatus. Cell68:945–954 [CrossRef][PubMed]
    [Google Scholar]
  38. Shen J., Gunsalus R. P.. 1997; Role of multiple ArcA recognition sites in anaerobic regulation of succinate dehydrogenase (sdhCDAB) gene expression in Escherichia coli. Mol Microbiol26:223–236 [CrossRef][PubMed]
    [Google Scholar]
  39. Sorek R., Cossart P.. 2010; Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet11:9–16 [CrossRef][PubMed]
    [Google Scholar]
  40. Swem D. L., Bauer C. E.. 2002; Coordination of ubiquinol oxidase and cytochrome cbb(3) oxidase expression by multiple regulators in Rhodobacter capsulatus. J Bacteriol184:2815–2820 [CrossRef][PubMed]
    [Google Scholar]
  41. Swem L. R., Elsen S., Bird T. H., Swem D. L., Koch H. G., Myllykallio H., Daldal F., Bauer C. E.. 2001; The RegB/RegA two-component regulatory system controls synthesis of photosynthesis and respiratory electron transfer components in Rhodobacter capsulatus. J Mol Biol309:121–138 [CrossRef][PubMed]
    [Google Scholar]
  42. Swem L. R., Kraft B. J., Swem D. L., Setterdahl A. T., Masuda S., Knaff D. B., Zaleski J. M., Bauer C. E.. 2003; Signal transduction by the global regulator RegB is mediated by a redox-active cysteine. EMBO J22:4699–4708 [CrossRef][PubMed]
    [Google Scholar]
  43. Swem L. R., Gong X., Yu C. A., Bauer C. E.. 2006; Identification of a ubiquinone-binding site that affects autophosphorylation of the sensor kinase RegB. J Biol Chem281:6768–6775 [CrossRef][PubMed]
    [Google Scholar]
  44. Vichivanives P., Bird T. H., Bauer C. E., Robert Tabita F.. 2000; Multiple regulators and their interactions in vivo and in vitro with the cbb regulons of Rhodobacter capsulatus. J Mol Biol300:1079–1099 [CrossRef][PubMed]
    [Google Scholar]
  45. Weaver P. F., Wall J. D., Gest H.. 1975; Characterization of Rhodopseudomonas capsulata. Arch Microbiol105:207–216 [CrossRef][PubMed]
    [Google Scholar]
  46. Willett J., Smart J. L., Bauer C. E.. 2007; RegA control of bacteriochlorophyll and carotenoid synthesis in Rhodobacter capsulatus. J Bacteriol189:7765–7773 [CrossRef][PubMed]
    [Google Scholar]
  47. Wu J., Bauer C. E.. 2008; RegB/RegA, a global redox-responding two-component system. Adv Exp Med Biol631:131–148 [CrossRef][PubMed]
    [Google Scholar]
  48. Wu J., Bauer C. E.. 2010; RegB kinase activity is controlled in part by monitoring the ratio of oxidized to reduced ubiquinones in the ubiquinone pool. MBio1:e00272 [CrossRef][PubMed]
    [Google Scholar]
  49. Wu J., Dragnea V., Bauer C. E.. 2012; Redox responding sensor kinases. In Two Component Systems in Bacteria41–56 Gross R., Beier D.. Horizon Scientific Press;
    [Google Scholar]
  50. Wu J., Cheng Z., Reddie K., Carroll K., Hammad L. A., Karty J. A., Bauer C. E.. 2013; RegB kinase activity is repressed by oxidative formation of cysteine sulfenic acid. J Biol Chem288:4755–4762 [CrossRef][PubMed]
    [Google Scholar]
  51. Yen H. C., Marrs B.. 1976; Map of genes for carotenoid and bacteriochlorophyll biosynthesis in Rhodopseudomonas capsulata. J Bacteriol126:619–629[PubMed]
    [Google Scholar]
  52. Zappa S., Bauer C. E.. 2013; Iron homeostasis in the Rhodobacter genus. Adv Bot Res66:289–326
    [Google Scholar]
  53. Zarzycki J., Erbilgin O., Kerfeld C. A.. 2015; Bioinformatic characterization of glycyl radical enzyme-associated bacterial microcompartments. Appl Environ Microbiol81:8315–8329 [CrossRef][PubMed]
    [Google Scholar]
  54. Zhang Y., Liu T., Meyer C. A., Eeckhoute J., Johnson D. S., Bernstein B. E., Nussbaum C., Myers R. M., Brown M. et al. 2008; Model-based analysis of ChIP-Seq (MACS). Genome Biol9::R137 [CrossRef]
    [Google Scholar]
  55. Schindel, H. S. RNA-SEq and ChIP-Seq data basehttp://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP076177 2016
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000081
Loading
/content/journal/mgen/10.1099/mgen.0.000081
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error